Data Science

Fragen und Antworten für Data Science-Experten, Machine Learning-Spezialisten und alle, die mehr über das Feld erfahren möchten


7
Organisierte Prozesse zur Datenbereinigung
Durch meine eingeschränkte Beschäftigung mit Data Science mit R wurde mir klar, dass die Bereinigung fehlerhafter Daten ein sehr wichtiger Teil der Vorbereitung von Daten für die Analyse ist. Gibt es Best Practices oder Verfahren zum Bereinigen von Daten vor deren Verarbeitung? Wenn ja, gibt es automatisierte oder halbautomatisierte Tools, …
34 r  data-cleaning 

5
Öffnen einer 20-GB-Datei zur Analyse mit Pandas
Ich versuche gerade, eine Datei mit Pandas und Python für maschinelles Lernen zu öffnen. Es wäre ideal, wenn ich sie alle in einem DataFrame hätte. Jetzt ist die Datei 18 GB groß und mein RAM ist 32 GB, aber ich bekomme immer wieder Speicherfehler. Aus Ihrer Erfahrung ist es möglich? …

3
Multi GPU in Keras
Wie können Sie in der Keras-Bibliothek (oder im Tensorflow) programmieren, um das Training auf mehrere GPUs aufzuteilen? Angenommen, Sie befinden sich in einer Amazon ec2-Instanz mit 8 GPUs und möchten alle verwenden, um schneller zu trainieren. Ihr Code ist jedoch nur für eine einzelne CPU oder GPU bestimmt.

4
Intuitive Erklärung des Verlusts durch Noise Contrastive Estimation (NCE)?
Ich habe über NCE (eine Form der Stichprobenauswahl) aus diesen beiden Quellen gelesen: Tensorflow-Zuschreibung Original Papier Kann mir jemand bei Folgendem helfen: Eine einfache Erklärung der Funktionsweise von NCE (Ich fand es schwierig, das oben Genannte zu analysieren und zu verstehen. Etwas Intuitives, das zur dort vorgestellten Mathematik führt, wäre …



1
Papier: Was ist der Unterschied zwischen Layer-Normalisierung, wiederkehrender Batch-Normalisierung (2016) und Batch-normalisierter RNN (2015)?
In letzter Zeit gibt es ein Papier zur Ebenennormalisierung . Es gibt auch eine Implementierung auf Keras. Aber ich erinnere mich, dass es Artikel mit dem Titel Recurrent Batch Normalization (Cooijmans, 2016) und Batch Normalized Recurrent Neural Networks (Laurent, 2015) gibt. Was ist der Unterschied zwischen diesen drei? Es gibt …



3
Warum sollten Sie im Softmax-Klassifikator die Funktion exp verwenden, um eine Normalisierung durchzuführen?
Warum Softmax im Gegensatz zur Standardnormalisierung verwenden? Im Kommentarbereich der oberen Antwort auf diese Frage hat @Kilian Batzner zwei Fragen aufgeworfen, die mich ebenfalls sehr verwirren. Es scheint, dass niemand eine Erklärung abgesehen von numerischen Vorteilen gibt. Ich habe die Gründe für die Verwendung von Cross-Entropy Loss herausgefunden, aber wie …


5
Konvertieren Sie eine Liste von Listen in einen Pandas-Datenrahmen
Ich versuche, eine Liste von Listen, die wie folgt aussieht, in einen Pandas-Datenrahmen zu konvertieren [['New York Yankees ', '"Acevedo Juan" ', 900000, ' Pitcher\n'], ['New York Yankees ', '"Anderson Jason"', 300000, ' Pitcher\n'], ['New York Yankees ', '"Clemens Roger" ', 10100000, ' Pitcher\n'], ['New York Yankees ', '"Contreras Jose"', …
30 pandas 

1
Warum ist xgboost so viel schneller als sklearn GradientBoostingClassifier?
Ich versuche, ein Steigungsverstärkungsmodell mit über 50.000 Beispielen und 100 numerischen Merkmalen zu trainieren. XGBClassifierBewältigt 500 Bäume innerhalb von 43 Sekunden auf meiner Maschine, während GradientBoostingClassifiernur 10 Bäume (!) in 1 Minute und 2 Sekunden bearbeitet werden :( Ich habe nicht versucht, 500 Bäume zu züchten, da dies Stunden dauern …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 

4
Kurzanleitung zum Trainieren stark unausgeglichener Datensätze
Ich habe ein Klassifizierungsproblem mit ungefähr 1000 positiven und 10000 negativen Proben im Trainingssatz. Dieser Datensatz ist also ziemlich unausgeglichen. Normaler Zufallswald versucht nur, alle Testproben als Mehrheitsklasse zu markieren. Hier finden Sie einige gute Antworten zu Unterabtastungen und gewichteten Zufallsforsten: Was bedeutet es, ein Tree Ensemble mit stark voreingenommenen …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.