Als «formulas» getaggte Fragen



3
Kürzeste äquivalente CNF-Formel
Sei eine erfüllbare CNF-Formel mit Variablen und Klauseln. Sei der Lösungsraum von . n m S F 1 F 1F1F1F_1nnnmmmSF1SF1S_{F_1}F1F1F_1 Betrachten Sie das Problem, mit andere CNF-Formel mit demselben Satz von Variablen wie bestimmen, mit (demselben Lösungsraum wie ), aber mit möglichst wenigen (einzigen) Klauseln Ziel ist es, die Anzahl …

1
Charakterisierung von einmal lesbaren Formeln über die gesamte Binärbasis
Hintergrund Eine Read-Once-Formel über eine Reihe von Gattern (auch Basis genannt) ist eine Formel, in der jede Eingabevariable einmal vorkommt. Einmal-Lese-Formeln werden üblicherweise über die De Morgan-Basis (die die 2-Bit-Gatter AND und OR und das 1-Bit-Gatter NOT aufweist) und die vollständige Binärbasis (die alle 2-Bit-Gatter aufweist) untersucht. So kann zum …

1
Gibt es für zwei beliebige nicht-isomorphe Graphen
Ich möchte sehr spezifisch sein. Kennt jemand einen Disproof oder einen Beweis für den folgenden Satz: ∃p∈Z[x],n,k,C∈N,∃p∈Z[x],n,k,C∈N,\exists p \in \mathbb{Z}[x], n, k, C \in \mathbb{N}, ∀G,H∈STRUC[Σgraph](min(|G|,|H|)=n,G≄H),∀G,H∈STRUC[Σgraph](min(|G|,|H|)=n,G≄H),\forall G, H \in STRUC[\Sigma_{graph}] (min(|G|, |H|) = n, G \not\simeq H), ∃φ∈L(Σgraph),∃φ∈L(Σgraph),\exists \varphi \in \mathcal{L}(\Sigma_{graph}), |φ|≤p(n)∧qd(φ)≤Clog(n)k∧G⊨φ∧H⊭φ.|φ|≤p(n)∧qd(φ)≤Clog(n)k∧G⊨φ∧H⊭φ.|\varphi| \leq p(n) \wedge qd(\varphi) \leq Clog(n)^k \wedge G …

2
Kürzeste Formel für einen n-term monotonen CNF
Eine monotone CNF-Formel mit m Termen für n Variablen ( ) ist eine Formel der Form , wobei jedes ein ODER einer Teilmenge der Variablen ist und reichen von bis .x1,…,xnx1,…,xnx_1,\ldots,x_nf(x1,…,xn)=⋀Cif(x1,…,xn)=⋀Cif(x_1,\ldots,x_n) = \bigwedge C_iCiCiC_ix1,…,xnx1,…,xnx_1,\ldots,x_niii111mmm Zum Beispiel ist eine monotone CNF-Formel mit 2 Termen auf 4 Variablen.(x1∨x3∨x4)∧(x2∨x4)(x1∨x3∨x4)∧(x2∨x4)(x_1 \vee x_3 \vee x_4) …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.