In GLMs ist die Quasi-Wahrscheinlichkeitsschätzung eine Möglichkeit, eine Über- oder Unterstreuung durch Auswahl einer geeigneten Varianzfunktion zu ermöglichen.
Ich hoffe, jemand kann einen intuitiven Überblick darüber geben, was Quasibinomialverteilung ist und was sie bewirkt. Diese Punkte interessieren mich besonders: Wie sich das Quasibinom von der Binomialverteilung unterscheidet. Wenn die Antwortvariable eine Proportion ist (Beispielwerte sind 0,23, 0,11, 0,78, 0,98), wird ein Quasibinomialmodell in R ausgeführt, ein Binomialmodell jedoch …
Ich versuche, verallgemeinerte lineare Modelle an einige Sätze von Zähldaten anzupassen, die möglicherweise überdispers sind oder nicht. Die beiden hier geltenden kanonischen Verteilungen sind das Poisson- und das Negative Binomial (Negbin) mit EV und Varianzμμ\mu VarP=μVarP=μVar_P = \mu VarNB=μ+μ2θVarNB=μ+μ2θVar_{NB} = \mu + \frac{\mu^2}{\theta} in denen R montiert werden unter Verwendung …
Frage (n): Welche Idee und Intuition steckt hinter der Quasi-Maximum-Likelihood-Schätzung (QMLE; auch als Pseudo-Maximum-Likelihood-Schätzung (PMLE) bezeichnet)? Was bewirkt, dass der Schätzer funktioniert, wenn die tatsächliche Fehlerverteilung nicht mit der angenommenen Fehlerverteilung übereinstimmt? Die Wikipedia-Seite für QMLE ist in Ordnung (kurz, intuitiv, auf den Punkt gebracht), aber ich könnte etwas mehr …
Ich habe Zähldaten (Nachfrage- / Angebotsanalyse mit Zählung der Anzahl der Kunden, abhängig von - möglicherweise - vielen Faktoren). Ich habe eine lineare Regression mit normalen Fehlern versucht, aber mein QQ-Plot ist nicht wirklich gut. Ich habe versucht, die Antwort logarithmisch umzuwandeln: wieder ein schlechtes QQ-Diagramm. Jetzt versuche ich eine …
Das Phänomen der "Überdispersion" in einem GLM tritt immer dann auf, wenn wir ein Modell verwenden, das die Varianz der Antwortvariablen einschränkt, und die Daten eine größere Varianz aufweisen, als es die Modellbeschränkung zulässt. Dies tritt häufig bei der Modellierung von Zähldaten mit einem Poisson-GLM auf und kann durch bekannte …
Soweit ich weiß, besteht der Unterschied zwischen dem logistischen Modell und dem Teilantwortmodell (frm) darin, dass die abhängige Variable (Y), in der frm [0,1] ist, logistisch jedoch {0, 1} ist. Ferner verwendet frm den Quasi-Likelihood-Schätzer, um seine Parameter zu bestimmen. Normalerweise können wir verwenden glm, um die logistischen Modelle von …
Ich habe drei Vorschläge zur Behandlung der Überdispersion in einer Poisson-Antwortvariablen und einem Startmodell mit allen festen Effekten gefunden: Verwenden Sie ein Quasi-Modell. Verwenden Sie negatives Binomial-GLM. Verwenden Sie ein gemischtes Modell mit einem zufälligen Effekt auf Subjektebene. Aber was soll man eigentlich wählen und warum? Gibt es ein tatsächliches …
Bei der Modellierung von Anspruchszählungsdaten in einer Versicherungsumgebung begann ich mit Poisson, bemerkte dann aber eine Überdispersion. Ein Quasi-Poisson-Modell modellierte die größere Mittelwert-Varianz-Beziehung besser als das Basis-Poisson-Modell, aber ich bemerkte, dass die Koeffizienten sowohl im Poisson- als auch im Quasi-Poisson-Modell identisch waren. Wenn dies kein Fehler ist, warum geschieht dies? …
Ich habe negative Binomial- und Quasi-Poisson-Modelle ausgeführt, die auf einem Ansatz zum Testen von Hypothesen basieren. Meine endgültigen Modelle, die beide Methoden verwenden, haben unterschiedliche Kovariaten und Wechselwirkungen. Es scheint, dass es in beiden Fällen keine Muster gibt, wenn ich meine Residuen zeichne. Daher habe ich mich gefragt, mit welchem …
In diesem Semester unterrichte ich eine Klasse zur Integration von Funktionen mehrerer Variablen und zur Vektorrechnung. Die Klasse besteht aus den meisten Wirtschafts- und Ingenieur-Majors, mit ein paar Mathematik- und Physik-Leuten. Ich habe diese Klasse letztes Semester unterrichtet und festgestellt, dass sich viele der Wirtschaftswissenschaftler in der zweiten Hälfte ziemlich …
Lassen Sie mich zunächst einige Hintergrundinformationen geben. Ich werde meine Fragen am Ende zusammenfassen. Die Beta-Verteilung, parametrisiert durch ihren Mittelwert und ϕ , hat Var ( Y ) = V ( μ ) / ( ϕ + 1 ) , wobei V ( μ ) = μ ( 1 - …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.