Statistiken und Big Data

Fragen und Antworten für Personen, die sich für Statistik, maschinelles Lernen, Datenanalyse, Data Mining und Datenvisualisierung interessieren


3
Wie reagieren Zufallswälder nicht auf Ausreißer?
In einigen Quellen, einschließlich dieser , habe ich gelesen , dass Random Forests unempfindlich gegenüber Ausreißern sind (wie es beispielsweise bei Logistic Regression und anderen ML-Methoden der Fall ist). Zwei Teile der Intuition sagen mir jedoch etwas anderes: Bei jeder Erstellung eines Entscheidungsbaums müssen alle Punkte klassifiziert werden. Dies bedeutet, …

2
Form und Berechnung von Konfidenzbändern in der linearen Regression verstehen
Ich versuche, den Ursprung der gekrümmten Form von Konfidenzbändern zu verstehen, die mit einer linearen OLS-Regression verbunden sind, und wie sie sich auf die Konfidenzintervalle der Regressionsparameter (Steigung und Achsenabschnitt) bezieht, zum Beispiel (unter Verwendung von R): require(visreg) fit <- lm(Ozone ~ Solar.R,data=airquality) visreg(fit) Es scheint, dass das Band mit …

3
Was ist mit "schwacher Lernender" gemeint?
Kann mir jemand sagen, was mit dem Ausdruck "schwacher Lernender" gemeint ist? Soll es eine schwache Hypothese sein? Ich bin verwirrt über die Beziehung zwischen einem schwachen Lernenden und einem schwachen Klassifikator. Sind beide gleich oder gibt es einen Unterschied? In dem Adaboost-Algorithmus T=10. Was ist damit gemeint? Warum wählen …


3
Intuitiver Unterschied zwischen versteckten Markov-Modellen und bedingten Zufallsfeldern
Ich verstehe, dass HMMs (Hidden Markov Models) generative Modelle und CRF diskriminative Modelle sind. Ich verstehe auch, wie CRFs (Conditional Random Fields) entworfen und verwendet werden. Was ich nicht verstehe, ist, wie sie sich von HMM unterscheiden? Ich habe gelesen, dass wir im Fall von HMM unseren nächsten Zustand nur …



5
Informationsgewinn, gegenseitige Information und damit verbundene Maßnahmen
Andrew More definiert Informationsgewinn als: IG(Y|X)=H(Y)−H(Y|X)IG(Y|X)=H(Y)−H(Y|X)IG(Y|X) = H(Y) - H(Y|X) wobei H(Y|X)H(Y|X)H(Y|X) die bedingte Entropie ist . Wikipedia nennt die oben genannte Menge jedoch gegenseitige Informationen . Wikipedia hingegen definiert Informationsgewinn als die Kullback-Leibler-Divergenz (auch bekannt als Informationsdivergenz oder relative Entropie) zwischen zwei Zufallsvariablen: DKL(P||Q)=H(P,Q)−H(P)DKL(P||Q)=H(P,Q)−H(P)D_{KL}(P||Q) = H(P,Q) - H(P) wobei …





1
Was sind prädiktive Nachkontrollen und was macht sie nützlich?
Ich verstehe die posteriore Vorhersageverteilung und habe über posteriore Vorhersageprüfungen gelesen , obwohl mir noch nicht klar ist, was sie bewirkt. Was genau ist der hintere prädiktive Check? Warum sagen manche Autoren, dass die Durchführung von Vorhersagetests im Nachhinein "die Daten zweimal verwenden" und nicht missbraucht werden sollten? (oder sogar, …

2
Wie macht man Bootstrapping mit Zeitreihendaten?
Ich habe kürzlich gelernt, Bootstrapping-Techniken zu verwenden, um Standardfehler und Konfidenzintervalle für Schätzer zu berechnen. Was ich gelernt habe war, dass wenn die Daten IID sind, Sie die Probendaten als Grundgesamtheit behandeln und eine Stichprobenerhebung mit Ersatz durchführen können. Auf diese Weise können Sie mehrere Simulationen einer Teststatistik erhalten. Bei …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.