Es ist bekannt, dass Quantencomputer in der Lage sind, eine breite Palette von kryptografischen Algorithmen in Polynomialzeit zu knacken , von denen vorher angenommen wurde, dass sie nur durch Ressourcen lösbar sind, die exponentiell mit der Bitgröße des Schlüssels ansteigen. Ein Beispiel dafür ist Shors Algorithmus . Soweit ich weiß, …
Es wird allgemein angenommen und behauptet, dass Quantencomputer zumindest bei einigen Aufgaben die Leistung klassischer Geräte übertreffen können. Eines der am häufigsten genannten Beispiele für ein Problem, bei dem Quantencomputer klassische Geräte übertreffen würden, ist ist auch nicht bekannt, ob auch mit einem klassischen Computer effizient lösbar ist (d. ist, …
Der Suchalgorithmus von Grover bietet eine nachweisbare quadratische Beschleunigung für die unsortierte Datenbanksuche. Der Algorithmus wird normalerweise durch die folgende Quantenschaltung ausgedrückt: In den meisten Darstellungen, ein wesentlicher Bestandteil des Protokolls ist das „Orakel gate“ UωUωU_\omega , die „magische Weise “ die Operation |x⟩↦(−1)f(x)|x⟩|x⟩↦(−1)f(x)|x⟩|x\rangle\mapsto(-1)^{f(x)}|x\rangle . Es wird jedoch oftmals nicht …
Dieser Blogpost von Scott Aaronson ist eine sehr nützliche und einfache Erklärung von Shors Algorithmus . Ich frage mich, ob es eine solche Erklärung für den zweitberühmtesten Quantenalgorithmus gibt: Grovers Algorithmus zum Durchsuchen einer ungeordneten Datenbank der Größe in O ( √)O(n)O(n)O(n)zeit.O(n−−√)O(n)O(\sqrt{n}) Insbesondere für das zunächst überraschende Ergebnis der Laufzeit …
Die gängige Darstellung von Nachrichten über Quantencomputer ist, dass ein Quantencomputer (QC) funktioniert, indem er sich in exponentiell viele nicht interagierende parallele Kopien von sich selbst in verschiedenen Universen aufteilt und jeweils versucht, ein anderes Zertifikat zu verifizieren, und zwar am Ende der Berechnung Das einzelne Exemplar, das ein gültiges …
Gibt es eine allgemeine Aussage darüber, welche Arten von Problemen mit Quantencomputern effizienter gelöst werden können (nur Quantengatemodell)? Haben die Probleme, für die heute ein Algorithmus bekannt ist, eine gemeinsame Eigenschaft? Soweit ich verstehe, hilft Quanten-Computing beim Problem der versteckten Untergruppen (Shor). Der Algorithmus von Grover beschleunigt die Suche. Ich …
Viele Veröffentlichungen behaupten, dass die Hamilton-Simulation BQP-vollständig ist (z. B. Hamilton-Simulation mit nahezu optimaler Abhängigkeit von allen Parametern und Hamilton-Simulation durch Qubitisierung ). Es ist leicht zu erkennen, dass die Hamilton-Simulation BQP-schwer ist, da jeder Quantenalgorithmus auf die Hamilton-Simulation reduziert werden kann. Wie ist die Hamilton-Simulation in BQP? dh was …
An der Oberfläche haben Quantenalgorithmen wenig mit klassischem Rechnen und insbesondere P vs NP zu tun: Die Lösung von Problemen aus NP mit Quantencomputern sagt nichts über die Beziehungen dieser klassischen Komplexitätsklassen aus 1 . Andererseits wird die in diesem Artikel vorgestellte "alternative Beschreibung" der klassischen Komplexitätsklasse PP als Klasse …
Als Ergebnis einer hervorragenden Antwort auf meine Frage zu Quanten-Bogosort habe ich mich gefragt, wie der aktuelle Stand der Technik bei Quanten-Algorithmen zum Sortieren ist. Um genau zu sein, wird das Sortieren hier als das folgende Problem definiert: Bei einem gegebenen Array EINEINA von ganzen Zahlen (fühlen sich frei , …
Ein Quantencomputer kann Probleme, die in der Komplexitätsklasse BQP liegen, effizient lösen . Ich habe eine Behauptung gesehen, die man (möglicherweise, weil wir nicht wissen, ob BQP eine richtige Teilmenge oder gleich PP ist) die Effizienz eines Quantencomputers durch Anwendung der Nachauswahl steigern kann und dass die Klasse der effizient …
Ich bin verwirrt über Grovers Algorithmus und seine Verbindung zu Komplexitätsklassen. Der Algorithmus des Grovers findet und element in einer Datenbank von (so dass ) von Elementen mit Aufrufen zum Orakel.kkkN=2nN=2nN=2^nf(k)=1f(k)=1f(k)=1∼N−−√=2n/2∼N=2n/2\sim \sqrt{N}=2^{n/2} Wir haben also folgendes Problem: Problem: Finde ein in der Datenbank, so dasskkkf(k)=1f(k)=1f(k)=1 Jetzt bin ich mir bewusst, …
Ich möchte wissen, welche Zeitkomplexität für Quantencomputer als effizient / ineffizient angesehen wird. Dazu muss ich wissen, wie viele Operationen ein Quantencomputer pro Sekunde ausführen kann. Kann mir jemand sagen, wie man es berechnet und von welchen Faktoren es abhängt (Implementierungsdetails oder Anzahl der Qubits usw.)?
Wie der Name bereits andeutet, ist diese Frage eine Fortsetzung dieser anderen . Ich war von der Qualität der Antworten begeistert, aber ich fand es immens interessant, wenn Erkenntnisse zu Optimierungs- und Approximationstechniken hinzugefügt würden, die jedoch möglicherweise nicht zum Thema gehören, daher diese Frage. Aus der Antwort von Blue: …
Gibt es Verschlüsselungssuiten, die von normalen Computern oder Supercomputern geknackt werden können, aber nicht von Quantencomputern? Wenn dies möglich ist, von welchen Annahmen wird es abhängen? (Faktorisierung großer Zahlen, a cab(modd)ab(modd)a^b\pmod d a b cac(modd)ac(modd)a^c\pmod d etc ...)abc(modd)abc(modd)a^{bc}\pmod d
Ich habe mir diese Vorlesungsnotiz angesehen, in der der Autor eine Orakeltrennung zwischen BQPBQP\mathsf{BQP} und NPNP\mathsf{NP} . Er weist darauf hin, wie "Standarddiagonalisierungstechniken verwendet werden können, um dies rigoros zu machen". BQPBQP\mathsf{BQP}AAANPA⊈BQPANPA⊈BQPA\mathsf{NP}^{A} \not\subseteq \mathsf{BQP}^{A}
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.