Als «feature-engineering» getaggte Fragen

Der Prozess der Verwendung von Domänenwissen über die Daten zur Erstellung von Funktionen, die Algorithmen für maschinelles Lernen verbessern

3
Wann wird One Hot Encoding vs LabelEncoder vs DictVectorizor verwendet?
Ich erstelle seit einiger Zeit Modelle mit kategorialen Daten. In dieser Situation verwende ich standardmäßig die LabelEncoder-Funktion von scikit-learn, um diese Daten vor dem Erstellen eines Modells zu transformieren. Ich verstehe den Unterschied zwischen OHE, LabelEncoderund DictVectorizorin Hinblick darauf, was sie auf die Daten zu tun, aber was mir nicht …

6
Codierungsmerkmale wie Monat und Stunde als kategorial oder numerisch?
Ist es besser, Features wie Monat und Stunde als Faktor oder numerisch in einem Modell für maschinelles Lernen zu codieren? Einerseits halte ich die numerische Codierung für sinnvoll, da die Zeit vorwärts geht (auf den fünften Monat folgt der sechste Monat), andererseits halte ich die kategoriale Codierung aufgrund der zyklischen …


1
Soll man heiße Vektoren mit numerischen Attributen skalieren
Im Falle einer Kombination von kategorialen und numerischen Attributen konvertiere ich die kategorialen Attribute normalerweise in einen heißen Vektor. Meine Frage ist, lasse ich diese Vektoren unverändert und skaliere die numerischen Attribute durch Standardisierung / Normalisierung, oder sollte ich die einen heißen Vektoren zusammen mit den numerischen Attributen skalieren?

3
Wie führe ich ein Feature-Engineering für unbekannte Features durch?
Ich nehme an einem Kaggle-Wettbewerb teil. Der Datensatz hat ungefähr 100 Funktionen und alle sind unbekannt (in Bezug darauf, was sie tatsächlich darstellen). Im Grunde sind es nur Zahlen. Die Leute führen eine Menge Feature-Engineering für diese Features durch. Ich frage mich, wie genau man Feature-Engineering für unbekannte Features durchführen …


5
Vergrößere die seaborn Heatmap
Ich erstelle einen corr()DF aus einem Original-DF. Die corr()df herauskommen 70 X 70 , und es ist unmöglich , die Heatmap sichtbar zu machen ... sns.heatmap(df). Wenn ich versuche, das anzuzeigen corr = df.corr(), passt die Tabelle nicht auf den Bildschirm und ich kann alle Zusammenhänge sehen. Ist es eine …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 




4
Ist Feature Engineering bei Verwendung von XGBoost noch nützlich?
Ich habe das Material zu XGBoost gelesen. Es scheint, dass diese Methode keine variable Skalierung erfordert, da sie auf Bäumen basiert und diese komplexe Nichtlinearitätsmuster-Interaktionen erfassen kann. Und es kann sowohl numerische als auch kategoriale Variablen verarbeiten, und es scheint auch, dass redundante Variablen diese Methode nicht zu sehr beeinflussen. …



1
Generieren Sie Vorhersagen, die orthogonal (nicht korreliert) zu einer bestimmten Variablen sind
Ich habe eine XMatrix, eine yVariable und eine andere Variable ORTHO_VAR. Ich muss die yVariable vorhersagen , wobei Xdie Vorhersagen aus diesem Modell orthogonal sein müssen, ORTHO_VARwährend sie so korreliert ywie möglich sind. Ich würde es vorziehen, wenn die Vorhersagen mit einer nicht parametrischen Methode wie erzeugt werden, xgboost.XGBRegressoraber ich …
8 correlation  machine-learning  dataset  logistic-regression  prediction  linear-regression  prediction  dummy-variables  neural-network  image-classification  python  k-nn  python  neural-network  neural-network  deep-learning  keras  tensorflow  image-classification  tensorflow  reinforcement-learning  policy-gradients  machine-learning  decision-trees  neural-network  overfitting  data-analysis  metric  python  scikit-learn  distance  scipy  machine-learning  python  scikit-learn  decision-trees  logistic-regression  keras  image-classification  implementation  machine-learning  python  scikit-learn  random-forest  decision-trees  machine-learning  feature-selection  feature-engineering  word2vec  word-embeddings  natural-language-process  scikit-learn  time-series  clustering  k-means  python  cross-validation  pyspark  statistics  cross-validation  multiclass-classification  evaluation  machine-learning  nlp  machine-translation  neural-network  deep-learning  keras  tensorflow  image-classification  machine-learning  python  similarity  distance  lstm  text  named-entity-recognition  machine-learning  keras  optimization  gan  learning-rate  neural-network  data-mining  dataset  databases  books  neural-network  rnn 
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.