Ich habe bereits eine Vorstellung von den Vor- und Nachteilen der Gratregression und des LASSO. Für das LASSO ergibt der L1-Strafausdruck einen Vektor mit geringem Koeffizienten, der als Merkmalsauswahlmethode angesehen werden kann. Es gibt jedoch einige Einschränkungen für den LASSO. Wenn die Merkmale eine hohe Korrelation aufweisen, wählt der LASSO …
Ich habe einige Daten angewendet, um die beste Variablenlösung des Regressionsmodells unter Verwendung der Gratregression in R zu finden. Ich habe lm.ridgeund glmnet(wann alpha=0) verwendet, aber die Ergebnisse sind sehr unterschiedlich, insbesondere wenn lambda=0. Es wird angenommen, dass beide Parameterschätzer die gleichen Werte haben. Also, was ist das Problem hier? …
(y⃗ −Xβ⃗ )TV−1(y⃗ −Xβ⃗ )+λf(β), (1)(y→−Xβ→)TV−1(y→−Xβ→)+λf(β), (1)(\vec{y}-X\vec{\beta})^TV^{-1}(\vec{y}-X\vec{\beta})+\lambda f(\beta),\ \ \ (1) (y⃗ −Xβ⃗ )(y⃗ −Xβ⃗ )+λf(β). (2)(y→−Xβ→)(y→−Xβ→)+λf(β). (2)(\vec{y}-X\vec{\beta})(\vec{y}-X\vec{\beta})+\lambda f(\beta).\ \ \ \ \ \ \ \ \ \ \ \ (2) This was mainly motivated by the fact that in my particular application, we have different variances for the y⃗ …
Sei A die Matrix unabhängiger Variablen und B die entsprechende Matrix der abhängigen Werte. In ridge regression, definieren wir einen Parameter so dass: . Nun sei [usv] = svd (A) und diagonaler Eintrag von 's'. wir definieren Freiheitsgrade (df) = . Die Ridge-Regression verkleinert die Koeffizienten von Komponenten mit geringer …
Ich arbeite derzeit an einem Vorhersagemodellierungsprojekt: Ich versuche, ein Modell zu lernen und Echtzeitvorhersagen auf der Grundlage des Modells zu treffen, das ich offline gelernt habe. Ich habe kürzlich angefangen, die Ridge-Regression zu verwenden, weil ich gelesen habe, dass Regularisierung dazu beitragen kann, den Effekt der Multikollinearität zu verringern. Allerdings …
In mehreren Antworten habe ich gesehen, dass CrossValidated-Benutzer OP vorschlagen, frühe Artikel über Lasso, Ridge und Elastic Net zu finden. Was sind für die Nachwelt die wegweisenden Arbeiten zu Lasso, Ridge und Elastic Net?
Ich habe die Beschreibung der Kammregression in Applied Linear Statistical Models , 5. Ausgabe, Kapitel 11, gelesen . Die Kammregression wird anhand der hier verfügbaren Körperfettdaten durchgeführt . Das Lehrbuch entspricht der Ausgabe in SAS, wobei die rücktransformierten Koeffizienten im angepassten Modell wie folgt angegeben werden: Y.= - 7,3978 + …
Wie führe ich eine nicht negative Gratregression durch? Nicht-negatives Lasso ist in verfügbar scikit-learn, aber für Ridge kann ich die Nicht-Negativität von Betas nicht erzwingen, und tatsächlich erhalte ich negative Koeffizienten. Weiß jemand warum das so ist? Kann ich Ridge auch in Bezug auf reguläre kleinste Quadrate implementieren? Dies wurde …
Ich verstehe, dass wir Regularisierung in einem Regressionsproblem der kleinsten Quadrate als anwenden können w∗=argminw[(y−Xw)T(y−Xw)+λ∥w∥2]w∗=argminw[(y−Xw)T(y−Xw)+λ‖w‖2]\boldsymbol{w}^* = \operatorname*{argmin}_w \left[ (\mathbf y-\mathbf{Xw})^T(\boldsymbol{y}-\mathbf{Xw}) + \lambda\|\boldsymbol{w}\|^2 \right] und dass dieses Problem eine geschlossene Lösung hat als: w^=(XTX+λI)−1XTy.w^=(XTX+λI)−1XTy.\hat{\boldsymbol{w}} = (\boldsymbol{X}^T\boldsymbol{X}+\lambda\boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{y}. Wir sehen, dass in der 2. Gleichung die Regularisierung einfach λλ\lambda zur Diagonale von \ …
Die Ridge-Regression kann ausgedrückt werden als wobei die vorhergesagte Bezeichnung ist , die Identifizierungsmatrix, das Objekt, für das wir eine Bezeichnung finden möchten, und die Matrix von Objekten so dass:y^=(X′X+aId)−1Xxy^=(X′X+aId)−1Xx\hat{y} = (\mathbf{X'X} + a\mathbf{I}_d)^{-1}\mathbf{X}xy^y^\hat{y}IdId\mathbf{I}_dd×dd×dd \times dxx\mathbf{x}XX\mathbf{X}n×dn×dn \times dnnnxi=(xi,1,...,xi,d)∈Rdxi=(xi,1,...,xi,d)∈Rd\mathbf{x}_i = (x_{i,1}, ..., x_{i,d})\in \mathbb{R}^d X=⎛⎝⎜⎜⎜⎜⎜x1,1x2,1⋮xn,1x1,2x2,2⋮x1,2……⋱…x1,dx2,d⋮xn,d⎞⎠⎟⎟⎟⎟⎟X=(x1,1x1,2…x1,dx2,1x2,2…x2,d⋮⋮⋱⋮xn,1x1,2…xn,d) \mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} …
Ich scheine eine Behauptung über lineare Regressionsmethoden, die ich an verschiedenen Orten gesehen habe, falsch zu verstehen. Die Parameter des Problems sind: Eingang: p + 1 y i p x i jNNN Datenproben von Größen, die jeweils aus einer "Antwort" -Größe und "Prädiktor" -Größenp+1p+1p+1yiyiy_ipppxijxijx_{ij} Das gewünschte Ergebnis ist eine "gute …
Ich bin mir bewusst, dass es gängige Praxis ist, die Merkmale für die Ridge- und Lasso-Regression zu standardisieren. Wäre es jedoch jemals praktischer, die Merkmale auf einer (0,1) -Skala als Alternative zur Z-Score-Standardisierung für diese Regressionsmethoden zu normalisieren?
Ich arbeite an einer Kreuzvalidierung der Vorhersage meiner Daten mit 200 Probanden und 1000 Variablen. Ich bin an einer Ridge-Regression interessiert, da die Anzahl der Variablen (die ich verwenden möchte) größer ist als die Anzahl der Stichproben. Ich möchte also Schrumpfungsschätzer verwenden. Die folgenden Beispieldaten bestehen aus: #random population of …
Ich arbeite an einem prädiktiven Kostenmodell, bei dem das Alter des Patienten (eine in Jahren gemessene ganzzahlige Größe) eine der Prädiktorvariablen ist. Ein starker nichtlinearer Zusammenhang zwischen Alter und Risiko eines Krankenhausaufenthaltes ist offensichtlich: Ich denke über einen bestraften Regressionsglättungs-Spline für das Alter des Patienten nach. Gemäß The Elements of …
Wenn , kann das Problem der kleinsten Quadrate, das dem Wert von eine sphärische Beschränkung auferlegt , als für ein überbestimmtes System. \ | \ cdot \ | _2 ist die euklidische Norm eines Vektors.y=Xβ+ey=Xβ+ey = X\beta + eδδ\deltaββ\betamin ∥y−Xβ∥22s.t. ∥β∥22≤δ2min ‖y−Xβ‖22s.t. ‖β‖22≤δ2\begin{equation} \begin{array} &\operatorname{min}\ \| y - X\beta \|^2_2 …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.