Als «ridge-regression» getaggte Fragen

Eine Regularisierungsmethode für Regressionsmodelle, die die Koeffizienten gegen Null verringert.

1
Ist die Regression mit L1-Regularisierung gleichbedeutend mit Lasso und mit L2-Regularisierung gleichbedeutend mit Ridge-Regression? Und wie schreibt man „Lasso“?
Ich bin ein Software-Ingenieur, der maschinelles Lernen lernt, insbesondere durch die maschinellen Lernkurse von Andrew Ng . Beim Studium der linearen Regression mit Regularisierung habe ich Begriffe gefunden, die verwirrend sind: Regression mit L1-Regularisierung oder L2-Regularisierung LASSO Gratregression Also meine Fragen: Ist die Regression mit L1-Regularisierung genau das gleiche wie …



2
Wann funktioniert die L1-Regularisierung besser als die L2-Regularisierung und umgekehrt?
Hinweis: Ich weiß, dass L1 die Eigenschaft zur Featureauswahl hat. Ich versuche zu verstehen, welche ich wählen soll, wenn die Funktionsauswahl völlig irrelevant ist. Wie kann man entscheiden, welche Regularisierung (L1 oder L2) verwendet werden soll? Was sind die Vor- und Nachteile jeder L1 / L2-Regularisierung? Wird empfohlen, zuerst die …


3
Interpretation der Gratregulierung in der Regression
Ich habe verschiedene Fragen bezüglich der First Penalty im Rahmen der kleinsten Fehlerquadrate: βridge=(λID+X′X)−1X′yβridge=(λID+X′X)−1X′y\beta_{ridge} = (\lambda I_D + X'X)^{-1}X'y 1) Der Ausdruck legt nahe, dass die Kovarianzmatrix von X zu einer Diagonalmatrix geschrumpft ist, was bedeutet, dass (unter der Annahme, dass die Variablen vor der Prozedur standardisiert wurden) die Korrelation …



2
Die Grenze des Ridge-Regressionsschätzers für "Einheitsvarianz", wenn
Betrachten Sie die Ridge-Regression mit einer zusätzlichen Einschränkung, die voraussetzt, dass eine Einheitssumme von Quadraten hat (entsprechend eine Einheitsvarianz). Bei Bedarf kann man davon ausgehen, dass eine Einheitssumme von Quadraten hat:y^y^\hat{\mathbf y}yy\mathbf y β^∗λ=argmin{∥y−Xβ∥2+λ∥β∥2}s.t.∥Xβ∥2=1.β^λ∗=arg⁡min{‖y−Xβ‖2+λ‖β‖2}s.t.‖Xβ‖2=1.\hat{\boldsymbol\beta}_\lambda^* = \arg\min\Big\{\|\mathbf y - \mathbf X \boldsymbol \beta\|^2+\lambda\|\boldsymbol\beta\|^2\Big\} \:\:\text{s.t.}\:\: \|\mathbf X \boldsymbol\beta\|^2=1. Was ist die Grenze …

2
Abdeckung der Konfidenzintervalle mit regulierten Schätzungen
Angenommen, ich versuche, eine große Anzahl von Parametern aus hochdimensionalen Daten mit einer Art regulierter Schätzungen abzuschätzen. Der Regularisierer führt einige Verzerrungen in die Schätzungen ein, aber es kann immer noch ein guter Kompromiss sein, da die Verringerung der Varianz dies mehr als wettmachen sollte. Das Problem tritt auf, wenn …




2
Schätzung der quadratischen und statistischen Signifikanz anhand des bestraften Regressionsmodells
Ich benutze das R-Paket bestraft , um geschrumpfte Koeffizientenschätzungen für einen Datensatz zu erhalten, bei dem ich viele Prädiktoren und wenig Wissen darüber habe, welche wichtig sind. Gibt es, nachdem ich die Abstimmungsparameter L1 und L2 ausgewählt und mit meinen Koeffizienten zufrieden bin, eine statistisch fundierte Möglichkeit, die Modellanpassung mit …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.