Als «machine-learning» getaggte Fragen

Algorithmen für maschinelles Lernen erstellen ein Modell der Trainingsdaten. Der Begriff "maschinelles Lernen" ist vage definiert; Es umfasst das, was auch als statistisches Lernen, Bestärkungslernen, unbeaufsichtigtes Lernen usw. bezeichnet wird. Fügen Sie immer einen spezifischeren Tag hinzu.

2
Sind maschinelle Lerntechniken „Approximationsalgorithmen“?
Vor kurzem gab es eine ML-ähnliche Frage zum theoretischen Stapelaustausch, und ich gab eine Antwort, in der Powells Methode, Gradientenabstieg, genetische Algorithmen oder andere "Approximationsalgorithmen" empfohlen wurden . In einem Kommentar sagte mir jemand, diese Methoden seien "Heuristiken" und keine "Approximationsalgorithmen" und näherten sich häufig nicht dem theoretischen Optimum (weil …

3
Websites für Vorhersagemodellierungswettbewerbe
Ich nehme an Vorhersagemodellierungswettbewerben auf Kaggle , TunedIt und CrowdAnalytix teil . Ich finde, dass diese Websites ein guter Weg sind, um Statistiken / maschinelles Lernen zu "trainieren". Gibt es noch andere Websites, über die ich Bescheid wissen sollte? Wie stehen Sie alle zu Wettbewerben, bei denen der Ausrichter von …


1
Erklärung von min_child_weight im xgboost-Algorithmus
Die Definition des Parameters min_child_weight in xgboost lautet wie folgt: Mindestinstanzgewicht (hessisch), das ein Kind benötigt. Wenn der Baumpartitionsschritt zu einem Blattknoten führt, dessen Instanzgewicht kleiner als min_child_weight ist, gibt der Erstellungsprozess die weitere Partitionierung auf. Im linearen Regressionsmodus entspricht dies einfach der minimalen Anzahl von Instanzen, die in jedem …




1
Gradient Backpropagation über ResNet-Skip-Verbindungen
Ich bin neugierig, wie Gradienten mithilfe von ResNet-Modulen / Überspringverbindungen über ein neuronales Netzwerk zurückgewonnen werden. Ich habe ein paar Fragen zu ResNet gesehen (z. B. Neuronales Netzwerk mit Sprungschichtverbindungen ), aber diese Frage bezieht sich speziell auf die Rückübertragung von Verläufen während des Trainings. Die grundlegende Architektur ist hier: …

3
Relu vs Sigmoid vs Softmax als versteckte Schicht Neuronen
Ich habe mit einem einfachen neuronalen Netzwerk mit nur einer ausgeblendeten Ebene von Tensorflow gespielt und dann verschiedene Aktivierungen für die ausgeblendete Ebene ausprobiert: Relu Sigmoid Softmax (na ja, normalerweise wird Softmax in der letzten Schicht verwendet.) Relu bietet die beste Zuggenauigkeit und Validierungsgenauigkeit. Ich bin mir nicht sicher, wie …

4
Wie heißt dieses Diagramm, das falsche und wahre positive Raten anzeigt, und wie wird es generiert?
Das Bild unten zeigt eine kontinuierliche Kurve von falsch-positiven Raten gegenüber wahr-positiven Raten: Ich verstehe jedoch nicht sofort, wie diese Sätze berechnet werden. Wenn eine Methode auf einen Datensatz angewendet wird, weist sie eine bestimmte FP-Rate und eine bestimmte FN-Rate auf. Bedeutet das nicht, dass jede Methode einen einzelnen Punkt …

1
Auswahl unter den richtigen Bewertungsregeln
In den meisten Ressourcen zu den Regeln für die richtige Bewertung werden verschiedene Bewertungsregeln wie Protokollverlust, Brier-Punktzahl oder sphärische Bewertung erwähnt. Häufig geben sie jedoch keine Orientierungshilfe zu den Unterschieden zwischen ihnen. (Anlage A: Wikipedia .) Die Auswahl des Modells, das die logarithmische Bewertung maximiert, entspricht der Auswahl des Maximum-Likelihood-Modells, …




3
Unterstützung der Vektorregression für die Vorhersage multivariater Zeitreihen
Hat jemand versucht, Zeitreihen mithilfe der Support-Vektor-Regression vorherzusagen? Ich verstehe Support-Vektor-Maschinen und teilweise Support-Vektor-Regression, aber ich verstehe nicht, wie sie zum Modellieren von Zeitreihen, insbesondere multivariaten Zeitreihen, verwendet werden können. Ich habe versucht, ein paar Artikel zu lesen, aber sie sind zu hoch. Kann mir jemand erklären, wie sie funktionieren …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.