Als «sampling» getaggte Fragen

4
Intuitive Erklärung des Verlusts durch Noise Contrastive Estimation (NCE)?
Ich habe über NCE (eine Form der Stichprobenauswahl) aus diesen beiden Quellen gelesen: Tensorflow-Zuschreibung Original Papier Kann mir jemand bei Folgendem helfen: Eine einfache Erklärung der Funktionsweise von NCE (Ich fand es schwierig, das oben Genannte zu analysieren und zu verstehen. Etwas Intuitives, das zur dort vorgestellten Mathematik führt, wäre …


1
Ist eine geschichtete Stichprobe erforderlich (zufällige Gesamtstruktur, Python)?
Ich verwende Python, um ein zufälliges Gesamtstrukturmodell für mein unausgeglichenes Dataset auszuführen (die Zielvariable war eine Binärklasse). Bei der Aufteilung des Trainings- und Testdatensatzes hatte ich Probleme, geschichtete Stichproben (wie der gezeigte Code) zu verwenden oder nicht. Bisher stellte ich in meinem Projekt fest, dass der geschichtete Fall zu einer …

1
Wie viele Features sollen mit Random Forests getestet werden?
Auf der Wikipedia-Seite, die "Die Elemente des statistischen Lernens" zitiert, heißt es: Für ein Klassifizierungsproblem mit Merkmalen gilt in der Regel ⌊ √ppp -Funktionen werden in jeder Aufteilung verwendet.⌊ p-√⌋⌊p⌋\lfloor \sqrt{p}\rfloor Ich verstehe, dass dies eine ziemlich gut fundierte Vermutung ist und wahrscheinlich durch empirische Beweise bestätigt wurde, aber gibt …

3
Muss ich bei einer unsymmetrischen Klasse eine Stichprobe für meine Validierungs- / Testdatensätze verwenden?
Ich bin ein Anfänger im maschinellen Lernen und stehe vor einer Situation. Ich arbeite an einem Real Time Bidding-Problem mit dem IPinYou-Dataset und versuche, eine Klickvorhersage zu erstellen. Die Sache ist, wie Sie vielleicht wissen, dass der Datensatz sehr unausgeglichen ist: Rund 1300 negative Beispiele (ohne Klick) für 1 positives …


1
Wie viele LSTM-Zellen soll ich verwenden?
Gibt es Faustregeln (oder tatsächliche Regeln) für die minimale, maximale und "angemessene" Anzahl von LSTM-Zellen, die ich verwenden sollte? Insbesondere beziehe ich mich auf BasicLSTMCell von TensorFlow und num_unitsEigenschaft. Bitte nehmen Sie an, dass ich ein Klassifizierungsproblem habe, das definiert ist durch: t - number of time steps n - …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

4
Gibt es gute Out-of-the-Box-Sprachmodelle für Python?
Ich erstelle Prototypen für eine Anwendung und benötige ein Sprachmodell, um die Ratlosigkeit einiger generierter Sätze zu berechnen. Gibt es ein geschultes Sprachmodell in Python, das ich problemlos verwenden kann? So etwas Einfaches wie model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 


2
Kreuzvalidierung: K-fach vs. wiederholte zufällige Teilstichprobe
Ich frage mich, welche Art von Modellkreuzvalidierung für das Klassifizierungsproblem gewählt werden soll: K-fach oder zufällige Unterabtastung (Bootstrap-Abtastung)? Ich gehe davon aus, dass 2/3 des Datensatzes (das sind ~ 1000 Elemente) für das Training und 1/3 für die Validierung verwendet werden. In diesem Fall ergibt K-Fold nur drei Iterationen (Folds), …

3
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.