Als «predictive-modeling» getaggte Fragen

Statistische Techniken zur Vorhersage der Ergebnisse.

8
Warum ist Überanpassung beim maschinellen Lernen schlecht?
In der Logik wird häufig angegeben, dass die Generalisierungsfähigkeit eines Modells durch Überanpassung eingeschränkt ist. Dies kann jedoch nur bedeuten, dass die Überanpassung ein Modell nach einer bestimmten Komplexität an der Verbesserung hindert. Wird das Modell durch Überanpassung ungeachtet der Komplexität der Daten schlechter, und wenn ja, warum ist dies …


1
Zeitreihenvorhersage mit LSTMs: Wichtigkeit, Zeitreihen stationär zu machen
In diesem Link zu Stationarität und Differenzierung wurde erwähnt, dass Modelle wie ARIMA eine stationäre Zeitreihe für die Vorhersage benötigen, da ihre statistischen Eigenschaften wie Mittelwert, Varianz, Autokorrelation usw. über die Zeit konstant sind. Da RNNs besser in der Lage sind, nichtlineare Beziehungen zu lernen ( wie hier angegeben: Das …

2
Wortvorhersage mit dem Word2vec-Modell
Bei einem Satz: „Wenn ich das öffnen ?? Tür es beginnt Heizung automatisch“ Ich möchte die Liste der möglichen Wörter in bekommen? mit einer Wahrscheinlichkeit. Das Grundkonzept, das im word2vec-Modell verwendet wird, besteht darin, ein Wort im gegebenen Umgebungskontext "vorherzusagen". Was ist die richtige Operation für Kontextvektoren, wenn das Modell …

5
Beim maschinellen Lernen werden spärliche und dichte Daten zusammengeführt, um die Leistung zu verbessern
Ich habe spärliche Merkmale, die prädiktiv sind, und ich habe einige dichte Merkmale, die auch prädiktiv sind. Ich muss diese Funktionen kombinieren, um die Gesamtleistung des Klassifikators zu verbessern. Wenn ich nun versuche, diese Merkmale zu kombinieren, dominieren die dichten Merkmale tendenziell stärker als die spärlichen Merkmale, wodurch sich die …

5
Vergrößere die seaborn Heatmap
Ich erstelle einen corr()DF aus einem Original-DF. Die corr()df herauskommen 70 X 70 , und es ist unmöglich , die Heatmap sichtbar zu machen ... sns.heatmap(df). Wenn ich versuche, das anzuzeigen corr = df.corr(), passt die Tabelle nicht auf den Bildschirm und ich kann alle Zusammenhänge sehen. Ist es eine …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

3
Wie kann man Wahrscheinlichkeiten in xgboost vorhersagen?
Die folgende Vorhersagefunktion gibt ebenfalls -ve-Werte an, sodass es sich nicht um Wahrscheinlichkeiten handeln kann. param <- list(max.depth = 5, eta = 0.01, objective="binary:logistic",subsample=0.9) bst <- xgboost(param, data = x_mat, label = y_mat,nround = 3000) pred_s <- predict(bst, x_mat_s2) Ich google & versuchte, pred_s <- predict(bst, x_mat_s2,type="response") aber es hat …


1
Hashing Trick - was passiert eigentlich
Wenn ML-Algorithmen, z. B. Vowpal Wabbit oder einige der Faktorisierungsmaschinen, die Klickratenwettbewerbe gewinnen ( Kaggle ), erwähnen, dass Features gehasht sind, was bedeutet das eigentlich für das Modell? Nehmen wir an, es gibt eine Variable, die die ID eines Internet-Zusatzes darstellt, der Werte wie '236BG231' annimmt. Dann verstehe ich, dass …

1
Wie viele LSTM-Zellen soll ich verwenden?
Gibt es Faustregeln (oder tatsächliche Regeln) für die minimale, maximale und "angemessene" Anzahl von LSTM-Zellen, die ich verwenden sollte? Insbesondere beziehe ich mich auf BasicLSTMCell von TensorFlow und num_unitsEigenschaft. Bitte nehmen Sie an, dass ich ein Klassifizierungsproblem habe, das definiert ist durch: t - number of time steps n - …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

4
Gibt es gute Out-of-the-Box-Sprachmodelle für Python?
Ich erstelle Prototypen für eine Anwendung und benötige ein Sprachmodell, um die Ratlosigkeit einiger generierter Sätze zu berechnen. Gibt es ein geschultes Sprachmodell in Python, das ich problemlos verwenden kann? So etwas Einfaches wie model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 



3
Welche Regression muss verwendet werden, um das Wahlergebnis in einem Mehrparteiensystem zu berechnen?
Ich möchte eine Prognose für das Ergebnis der Parlamentswahlen abgeben. Meine Ausgabe ist der Prozentsatz, den jede Partei erhält. Es gibt mehr als zwei Parteien, daher ist eine logistische Regression keine praktikable Option. Ich könnte für jede Partei eine eigene Regression vornehmen, aber in diesem Fall wären die Ergebnisse in …

3
Beziehung zwischen KS, AUROC und Gini
Gemeinsame Modellvalidierungsstatistiken wie der Kolmogorov-Smirnov-Test (KS), der AUROC- und der Gini-Koeffizient hängen alle funktional zusammen. Meine Frage hat jedoch damit zu tun, zu beweisen, wie diese alle zusammenhängen. Ich bin gespannt, ob mir jemand helfen kann, diese Beziehungen zu beweisen. Ich konnte online nichts finden, aber ich bin wirklich interessiert …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.