Als «lstm» getaggte Fragen

LSTM steht für Long Short-Term Memory. Wenn wir diesen Begriff die meiste Zeit verwenden, beziehen wir uns auf ein wiederkehrendes neuronales Netzwerk oder einen Block (Teil) eines größeren Netzwerks.

1
Zeitreihenvorhersage mit LSTMs: Wichtigkeit, Zeitreihen stationär zu machen
In diesem Link zu Stationarität und Differenzierung wurde erwähnt, dass Modelle wie ARIMA eine stationäre Zeitreihe für die Vorhersage benötigen, da ihre statistischen Eigenschaften wie Mittelwert, Varianz, Autokorrelation usw. über die Zeit konstant sind. Da RNNs besser in der Lage sind, nichtlineare Beziehungen zu lernen ( wie hier angegeben: Das …

2
Wie füttere ich LSTM mit verschiedenen Eingangsarraygrößen?
LSTMWie ist es möglich , ein Netzwerk zu schreiben und es mit unterschiedlichen Eingangsarraygrößen zu versorgen? Zum Beispiel möchte ich Sprach- oder Textnachrichten in einer anderen Sprache erhalten und übersetzen. Die erste Eingabe ist vielleicht "Hallo", aber die zweite ist "Wie geht es dir?". Wie kann ich ein Design entwerfen …
18 keras  lstm 



2
Wie implementiere ich eine Eins-zu-Viele- und eine Viele-zu-Viele-Sequenzvorhersage in Keras?
Ich habe Mühe, den Keras-Codierungsunterschied für die Eins-zu-Viele-Sequenzkennzeichnung (z. B. Klassifizierung einzelner Bilder) und die Viele-zu-Viele-Sequenzkennzeichnung (z. B. Klassifizierung von Bildsequenzen) zu interpretieren. Ich sehe häufig zwei verschiedene Arten von Codes: Bei Typ 1 wird kein TimeDistributed wie folgt angewendet: model=Sequential() model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode="valid", input_shape=[1, 56,14])) model.add(Activation("relu")) model.add(Convolution2D(nb_filters, kernel_size[0], …
13 keras  rnn  lstm  sequence 


1
Multi-dimensionale und multivariate Zeitreihenprognose (RNN / LSTM) Keras
Ich habe versucht zu verstehen, wie man Daten darstellt und formt, um eine multidimentionale und multivariate Zeitreihenvorhersage mit Keras (oder TensorFlow) zu erstellen, aber ich bin immer noch sehr unklar, nachdem ich viele Blogposts / Tutorials / Dokumentationen gelesen habe, wie man die Daten im Internet präsentiert richtige Form (die …
12 python  keras  rnn  lstm 

1
Was ist der Haken bei LSTM?
Ich erweitere mein Wissen über das Keras-Paket und habe mit einigen der verfügbaren Modelle gearbeitet. Ich habe ein NLP-Binärklassifizierungsproblem, das ich zu lösen versuche, und wende verschiedene Modelle an. Nachdem ich mit einigen Ergebnissen gearbeitet und mehr und mehr über LSTM gelesen habe, scheint es, als ob dieser Ansatz allem …

4
Vorhersageintervall um die LSTM-Zeitreihenprognose
Gibt es eine Methode zur Berechnung des Vorhersageintervalls (Wahrscheinlichkeitsverteilung) um eine Zeitreihenprognose aus einem LSTM-Netzwerk (oder einem anderen wiederkehrenden neuronalen Netzwerk)? Angenommen, ich prognostiziere 10 Stichproben für die Zukunft (t + 1 bis t + 10), basierend auf den letzten 10 beobachteten Stichproben (t-9 bis t), würde ich erwarten, dass …

4
Gibt es gute Out-of-the-Box-Sprachmodelle für Python?
Ich erstelle Prototypen für eine Anwendung und benötige ein Sprachmodell, um die Ratlosigkeit einiger generierter Sätze zu berechnen. Gibt es ein geschultes Sprachmodell in Python, das ich problemlos verwenden kann? So etwas Einfaches wie model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

2
Ausfall auf welchen LSTM-Schichten?
Ist es bei Verwendung einer Mehrschicht LSTMmit Dropout ratsam, Dropout auf alle ausgeblendeten Ebenen sowie auf die Ausgabeebenen für dichte Ebenen zu setzen? In Hintons Artikel (der Dropout vorschlug) legte er Dropout nur auf die dichten Schichten, aber das lag daran, dass die verborgenen inneren Schichten faltungsmäßig waren. Natürlich kann …



1
Keras LSTM mit 1D-Zeitreihen
Ich lerne, wie man Keras verwendet, und ich habe mit meinem beschrifteten Datensatz anhand der Beispiele in Chollets Deep Learning für Python vernünftigen Erfolg gehabt . Der Datensatz ist ~ 1000 Zeitreihen mit einer Länge von 3125 mit 3 möglichen Klassen. Ich möchte über die grundlegenden dichten Schichten hinausgehen, die …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.