Als «deep-learning» getaggte Fragen

Ein neues Gebiet der maschinellen Lernforschung, das sich mit den Technologien befasst, die zum Lernen hierarchischer Darstellungen von Daten verwendet werden, hauptsächlich mit tiefen neuronalen Netzen (dh Netzen mit zwei oder mehr verborgenen Schichten), aber auch mit einer Art probabilistischer grafischer Modelle.

2
Deep Learning mit Spektrogrammen zur Schallerkennung
Ich habe die Möglichkeit untersucht, Geräusche (zum Beispiel Tiergeräusche) mithilfe von Spektrogrammen zu klassifizieren. Die Idee ist, ein tiefes Faltungs-Neuronales Netz zu verwenden, um Segmente im Spektrogramm zu erkennen und eine (oder mehrere) Klassenbezeichnungen auszugeben. Dies ist keine neue Idee (siehe zum Beispiel die Klangklassifizierung von Walen oder die Erkennung …

2
Gibt es eine Möglichkeit, die vom Early Stopping-Rückruf in Keras verwendete Metrik zu ändern?
Bei Verwendung des Rückrufs zum frühen Stoppen in Keras wird das Training beendet, wenn eine Metrik (normalerweise Validierungsverlust) nicht zunimmt. Gibt es eine Möglichkeit, eine andere Metrik (wie Präzision, Rückruf, f-Maß) anstelle des Validierungsverlusts zu verwenden? Alle Beispiele, die ich bisher gesehen habe, ähneln diesem: callbacks.EarlyStopping (monitor = 'val_loss', geduld …

2
Deep Learning für Nicht-Image-Nicht-NLP-Aufgaben?
Bisher gibt es viele interessante Anwendungen für tiefes Lernen in der Bildverarbeitung oder der Verarbeitung natürlicher Sprache. Wie ist es in anderen traditionelleren Bereichen? Zum Beispiel habe ich traditionelle soziodemografische Variablen sowie möglicherweise viele Labormessungen und möchte eine bestimmte Krankheit vorhersagen. Wäre dies eine Deep-Learning-Anwendung, wenn ich viele Beobachtungen habe? …

1
Wie viele LSTM-Zellen soll ich verwenden?
Gibt es Faustregeln (oder tatsächliche Regeln) für die minimale, maximale und "angemessene" Anzahl von LSTM-Zellen, die ich verwenden sollte? Insbesondere beziehe ich mich auf BasicLSTMCell von TensorFlow und num_unitsEigenschaft. Bitte nehmen Sie an, dass ich ein Klassifizierungsproblem habe, das definiert ist durch: t - number of time steps n - …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 


4
Gibt es gute Out-of-the-Box-Sprachmodelle für Python?
Ich erstelle Prototypen für eine Anwendung und benötige ein Sprachmodell, um die Ratlosigkeit einiger generierter Sätze zu berechnen. Gibt es ein geschultes Sprachmodell in Python, das ich problemlos verwenden kann? So etwas Einfaches wie model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

1
Verwenden Sie einen vorab trainierten CNN-Klassifikator und wenden Sie ihn auf einen anderen Bilddatensatz an
Wie würden Sie ein Pre-Training optimieren , um es auf ein separates Problem anzuwenden? Würden Sie dem vorab trainierten Modell einfach weitere Ebenen hinzufügen und es an Ihrem Datensatz testen? neural network Wenn die Aufgabe beispielsweise darin bestand, ein CNN zum Klassifizieren von Hintergrundgruppen zu verwenden , würde es sicher …

2
Wann sagen wir, dass der Datensatz nicht klassifizierbar ist?
Ich habe oft einen Datensatz analysiert, für den ich keine Klassifizierung vornehmen konnte. Um zu sehen, ob ich einen Klassifikator bekommen kann, habe ich normalerweise die folgenden Schritte ausgeführt: Generieren Sie Box-Plots der Beschriftung anhand numerischer Werte. Reduzieren Sie die Dimensionalität auf 2 oder 3, um festzustellen, ob Klassen trennbar …

3
Soll ich GPU oder CPU für Inferenz verwenden?
Ich betreibe ein tief lernendes neuronales Netzwerk, das von einer GPU trainiert wurde. Ich möchte dies jetzt auf mehreren Hosts bereitstellen, um darauf schließen zu können. Die Frage ist, unter welchen Bedingungen ich entscheiden soll, ob ich GPUs oder CPUs als Inferenz verwenden soll. Weitere Details aus den Kommentaren unten …

2
Was ist der Unterschied zwischen erweiterter Faltung und Entfaltung?
Diese beiden Faltungsoperationen sind derzeit im Deep Learning sehr verbreitet. Ich habe in diesem Artikel über die erweiterte Faltungsschicht gelesen: WAVENET: EIN GENERATIVES MODELL FÜR ROHES AUDIO und Entfaltung ist in diesem Artikel: Vollständig Faltungsnetzwerke für die semantische Segmentierung Beide scheinen das Bild zu verbessern, aber was ist der Unterschied?


4
Wie word2vec verwendet werden kann, um unsichtbare Wörter zu identifizieren und sie mit bereits trainierten Daten in Beziehung zu setzen
Ich habe an einem word2vec Gensim-Modell gearbeitet und fand es wirklich interessant. Ich bin daran interessiert herauszufinden, wie ein unbekanntes / unsichtbares Wort, wenn es mit dem Modell überprüft wird, ähnliche Begriffe aus dem trainierten Modell erhalten kann. Ist das möglich? Kann word2vec dafür optimiert werden? Oder der Trainingskorpus muss …



4
Maschinelles Lernen vs Deep Learning
Ich bin etwas verwirrt über den Unterschied zwischen den Begriffen "Maschinelles Lernen" und "Deep Learning". Ich habe es gegoogelt und viele Artikel gelesen, aber es ist mir immer noch nicht sehr klar. Eine bekannte Definition von maschinellem Lernen von Tom Mitchell ist: Ein Computerprogramm soll aus der Erfahrung E in …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.