Als «apache-hadoop» getaggte Fragen

Hadoop ist ein Open-Source-Projekt von Apache, das Software für zuverlässiges und skalierbares verteiltes Computing bereitstellt. Das Projekt selbst enthält eine Vielzahl weiterer ergänzender Ergänzungen.



5
Vergrößere die seaborn Heatmap
Ich erstelle einen corr()DF aus einem Original-DF. Die corr()df herauskommen 70 X 70 , und es ist unmöglich , die Heatmap sichtbar zu machen ... sns.heatmap(df). Wenn ich versuche, das anzuzeigen corr = df.corr(), passt die Tabelle nicht auf den Bildschirm und ich kann alle Zusammenhänge sehen. Ist es eine …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 


3
Ersetzt Amazon RedShift Hadoop für ~ 1XTB-Daten?
Es gibt viel Hype um Hadoop und sein Ökosystem. Ist es in der Praxis jedoch nicht sinnvoller, Amazon RedShift zum Abfragen großer Datenmengen zu verwenden, als Zeit und Mühe für die Erstellung eines Hadoop-Clusters zu investieren , wenn sich viele Datenmengen im Terabyte-Bereich befinden ? Wie ist der Vergleich zwischen …

2
Kompromisse zwischen Storm und Hadoop (MapReduce)
Kann mir jemand freundlich etwas über die Kompromisse erzählen, die bei der Auswahl zwischen Storm und MapReduce in Hadoop Cluster für die Datenverarbeitung entstehen? Abgesehen von der offensichtlichen Tatsache ist Hadoop (Verarbeitung über MapReduce in einem Hadoop-Cluster) natürlich ein Stapelverarbeitungssystem und Storm ein Echtzeitverarbeitungssystem. Ich habe ein bisschen mit Hadoop …

4
Gibt es gute Out-of-the-Box-Sprachmodelle für Python?
Ich erstelle Prototypen für eine Anwendung und benötige ein Sprachmodell, um die Ratlosigkeit einiger generierter Sätze zu berechnen. Gibt es ein geschultes Sprachmodell in Python, das ich problemlos verwenden kann? So etwas Einfaches wie model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

3
Können für MongoDB geschriebene Algorithmen zur Kartenreduzierung später auf Hadoop portiert werden?
In unserem Unternehmen verfügen wir über eine MongoDB-Datenbank mit vielen unstrukturierten Daten, für die wir kartenreduzierende Algorithmen ausführen müssen, um Berichte und andere Analysen zu erstellen. Für die Implementierung der erforderlichen Analysen stehen zwei Ansätze zur Auswahl: Ein Ansatz besteht darin, die Daten aus MongoDB in einen Hadoop-Cluster zu extrahieren …

3
Beste Sprachen für wissenschaftliches Rechnen [geschlossen]
Geschlossen . Diese Frage muss fokussierter sein . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so, dass sie sich nur auf ein Problem konzentriert, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 5 Jahren . Es scheint, als ob in den meisten Sprachen …
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 

3

3
Was sind Rs Speicherbeschränkungen?
Bei der Überprüfung von " Applied Predictive Modeling " stellt ein Prüfer fest : Eine Kritik, die ich an der Pädagogik des statistischen Lernens (SL) habe, ist das Fehlen von Überlegungen zur Rechenleistung bei der Bewertung verschiedener Modellierungstechniken. Mit seinen Schwerpunkten auf Bootstrapping und Kreuzvalidierung zum Tunen / Testen von …


1
Kaskadierter Fehler im Apache-Sturm
Einer der Gründe für die gemeinsame Verwendung von Storm- und Hadoop-Clustern in Summingbird ist, dass die Verarbeitung durch Storm zu einer Kaskadierung von Fehlern führt. Um diese Kaskadierung von Fehlern und deren Anhäufung zu vermeiden, wird der Hadoop-Cluster verwendet, um die Daten stapelweise zu verarbeiten und die Storm-Ergebnisse zu verwerfen, …

3
Gute Bücher für Hadoop, Spark und Spark Streaming [geschlossen]
Geschlossen . Diese Frage basiert auf Meinungen . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage, damit sie mit Fakten und Zitaten beantwortet werden kann, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 5 Jahren . Kann jemand gute Bücher vorschlagen, um die Grundlagen …

2
Lambda-Architektur - Implementieren der Zusammenführungs- / Abfrageebene
Ich lese über Lambda-Architektur. Es ergibt Sinn. Wir haben warteschlangenbasierte Datenaufnahme. Wir haben einen In-Memory-Speicher für Daten, der sehr neu ist, und wir haben HDFS für alte Daten. Wir haben also unseren gesamten Datensatz. in unserem System. sehr gut. Das Architekturdiagramm zeigt jedoch, dass die Zusammenführungsschicht sowohl die Batch-Schicht als …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.