Data Science

Fragen und Antworten für Data Science-Experten, Machine Learning-Spezialisten und alle, die mehr über das Feld erfahren möchten


2
Welche Lernprobleme eignen sich für Support Vector Machines?
Welche Merkmale oder Eigenschaften weisen darauf hin, dass ein bestimmtes Lernproblem mithilfe von Support-Vektor-Maschinen gelöst werden kann? Mit anderen Worten, was ist es, was Sie dazu bringt, wenn Sie ein Lernproblem sehen: "Oh, ich sollte auf jeden Fall SVMs für dieses" "verwenden, anstatt neuronale Netze oder Entscheidungsbäume oder irgendetwas anderes?

2
Extrahieren Sie die informativsten Textteile aus Dokumenten
Gibt es Artikel oder Diskussionen zum Extrahieren von Textteilen, die die meisten Informationen zum aktuellen Dokument enthalten? Zum Beispiel habe ich einen großen Bestand an Dokumenten aus derselben Domäne. Es gibt Textteile, die die wichtigsten Informationen enthalten, über die ein einzelnes Dokument spricht. Ich möchte einige dieser Teile extrahieren und …
16 nlp  text-mining 

3
Wie lerne ich Data Science selbst? [geschlossen]
Geschlossen . Diese Frage muss gezielter gestellt werden . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so, dass sie sich nur auf ein Problem konzentriert, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 4 Jahren . Ich bin ein autodidaktischer Webentwickler und möchte …


6
Data Science Podcasts?
Was sind einige Podcasts, die sich auf die Datenwissenschaft beziehen? Dies ist eine ähnliche Frage wie die Referenzanforderungsfrage bei CrossValidated . Details / Regeln: Die Podcasts (das Thema und die Folgen) sollten sich auf die Datenwissenschaft beziehen. (Zum Beispiel: Ein Podcast über eine andere Domäne mit einer Episode, die sich …




2
Wie kann die Genauigkeit von Klassifikatoren erhöht werden?
Ich benutze das OpenCV-Beispiel letter_recog.cpp, um mit zufälligen Bäumen und anderen Klassifikatoren zu experimentieren. In diesem Beispiel sind sechs Klassifikatoren implementiert - Random Tree, Boosting, MLP, kNN, naive Bayes und SVM. Es wird ein UCI-Brieferkennungsdatensatz mit 20000 Instanzen und 16 Funktionen verwendet, den ich zum Trainieren und Testen in zwei …


3
Diskriminierende Ein-Klassen-Klassifizierung mit unausgewogenem, heterogenem negativem Hintergrund?
Ich arbeite daran, einen vorhandenen überwachten Klassifikator zu verbessern, um {Protein} -Sequenzen als zu einer bestimmten Klasse gehörig zu klassifizieren (Neuropeptidhormon-Vorläufer) oder nicht. Es gibt ungefähr 1.150 bekannte "Positive" vor einem Hintergrund von ungefähr 13 Millionen Proteinsequenzen ("Unbekannter / schlecht kommentierter Hintergrund") oder ungefähr 100.000 überprüfte, relevante Proteine, die mit …

6
Was ist der Grund für die Protokolltransformation weniger kontinuierlicher Variablen?
Ich habe ein Klassifizierungsproblem gemacht und den Code und die Tutorials vieler Leute gelesen. Eine Sache, die mir aufgefallen ist, ist, dass viele Leute nehmen np.logoder logvon stetigen Variablen wie loan_amountoder applicant_incomeusw. Ich möchte nur den Grund dahinter verstehen. Hilft es, die Genauigkeit unserer Modellvorhersage zu verbessern? Ist es obligatorisch? …

5
Vergrößere die seaborn Heatmap
Ich erstelle einen corr()DF aus einem Original-DF. Die corr()df herauskommen 70 X 70 , und es ist unmöglich , die Heatmap sichtbar zu machen ... sns.heatmap(df). Wenn ich versuche, das anzuzeigen corr = df.corr(), passt die Tabelle nicht auf den Bildschirm und ich kann alle Zusammenhänge sehen. Ist es eine …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

3
Wie bekomme ich Vorhersagen mit predict_generator zum Streaming von Testdaten in Keras?
Im Keras-Blog zum Training von Convnets von Grund auf wird im Code nur das Netzwerk angezeigt , das mit Trainings- und Validierungsdaten ausgeführt wird. Was ist mit Testdaten? Entsprechen die Validierungsdaten den Testdaten (glaube ich nicht)? Wenn ein separater Testordner in ähnlichen Zeilen wie der Zug- und der Validierungsordner vorhanden …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.