Die Verarbeitung natürlicher Sprache ist eine Reihe von Techniken aus den Bereichen Linguistik, künstliche Intelligenz, maschinelles Lernen und Statistik, die darauf abzielen, menschliche Sprachen zu verarbeiten und zu verstehen.
Nicht sicher, ob dies die richtige Stack-Site ist, aber es geht los. Wie funktioniert die .similiarity-Methode? Wow spaCy ist großartig! Das tfidf-Modell könnte einfacher sein, aber w2v mit nur einer Codezeile ?! In seinem 10-zeiligen Tutorial zu spaCy andrazhribernik zeigen wir die .similarity-Methode, die für Token, Sents, Word Chunks und …
Ich frage mich, warum hierarchisches Softmax bei seltenen Wörtern besser ist, während negatives Sampling bei häufigen Wörtern bei den CBOW- und Skip-Gram-Modellen von word2vec besser ist. Ich habe die Behauptung unter https://code.google.com/p/word2vec/ gelesen .
Angenommen, ich verwende ein RNN / LSTM, um eine Stimmungsanalyse durchzuführen, bei der es sich um einen 1: 1-Ansatz handelt (siehe diesen Blog ). Das Netzwerk wird durch eine verkürzte Backpropagation Through Time (BPTT) trainiert, bei der das Netzwerk wie gewohnt nur für 30 letzte Schritte abgewickelt wird. In meinem …
In zwei weit verbreiteten Spracherkennungsbibliotheken, Compact Language Detector 2 für C ++ und Language Detector für Java, verwendeten beide (zeichenbasierte) n-Gramme, um Textfunktionen zu extrahieren. Warum wird ein Wortsack (einzelnes Wort / Wörterbuch) nicht verwendet, und was sind die Vor- und Nachteile von Wortsack und n-Gramm? Was sind auch einige …
Beschreibung: Die Problemdomäne sei die Dokumentklassifikation, wenn eine Menge von Merkmalsvektoren existiert, die jeweils zu einer oder mehreren Klassen gehören. Beispielsweise doc_1könnte ein Dokument zu gehörenSports und EnglishKategorien gehören. Frage: Was wäre die Bezeichnung für einen Merkmalsvektor, wenn Sie das neuronale Netz für die Klassifizierung verwenden? Wäre es ein Vektor, …
Ich habe Probleme beim Verständnis des Sprunggrammmodells des Word2Vec-Algorithmus. In fortlaufenden Wortsäcken ist leicht zu erkennen, wie die Kontextwörter in das neuronale Netzwerk "passen" können, da Sie sie im Grunde nach dem Multiplizieren jeder der One-Hot-Codierungsdarstellungen mit der Eingabematrix W mitteln. Im Fall von Skip-Gram erhalten Sie den Eingangswortvektor jedoch …
Ich versuche, ungefähr 60 Millionen Phrasen in einen Vektorraum einzubetten und dann die Kosinusähnlichkeit zwischen ihnen zu berechnen . Ich habe sklearns CountVectorizermit einer speziell entwickelten Tokenizer-Funktion verwendet, die Unigramme und Bigramme erzeugt. Es stellt sich heraus, dass ich eine enorme Anzahl von Spalten berücksichtigen muss, die linear in der …
Ich fand ein sehr hilfreiches Tutorial zum EM-Algorithmus . Das Beispiel und das Bild aus dem Tutorial sind einfach genial. Verwandte Frage zur Berechnung von Wahrscheinlichkeiten Wie funktioniert die Erwartungsmaximierung? Ich habe noch eine Frage, wie man die im Tutorial beschriebene Theorie mit dem Beispiel verbindet. gtgtg_tlogP(x;Θ)logP(x;Θ)\log P(x;\Theta)gt(Θ^(t))=logP(x;Θ^(t))gt(Θ^(t))=logP(x;Θ^(t))g_t( \hat{\Theta}^{(t)}) = …
Eine Möglichkeit zum Generieren von Worteinbettungen ist die folgende ( Spiegelung ): Holen Sie sich eine Korpora, zB "Ich fliege gerne. Ich mag NLP. Ich mag tiefes Lernen." Erstellen Sie daraus das Wort Cooccurrence Matrix: Führen Sie SVD für X.XX durch und behalten Sie die ersten kkk Spalten von U …
Ich habe Probleme, diesen Satz zu verstehen: Die erste vorgeschlagene Architektur ähnelt der Feedforward-NNLM, bei der die nichtlineare verborgene Schicht entfernt und die Projektionsschicht für alle Wörter (nicht nur für die Projektionsmatrix) gemeinsam genutzt wird. Somit werden alle Wörter an dieselbe Position projiziert (ihre Vektoren werden gemittelt). Was ist die …
Für eine NLP-Aufgabe (Natural Language Processing) werden häufig word2vec-Vektoren als Einbettung für die Wörter verwendet. Es kann jedoch viele unbekannte Wörter geben, die nicht von den word2vec-Vektoren erfasst werden, einfach weil diese Wörter in den Trainingsdaten nicht oft genug gesehen werden (viele Implementierungen verwenden eine Mindestanzahl, bevor dem Wortschatz ein …
Wie kann ich das Ausmaß der Streuung in einem Vektor von Wortzahlen quantifizieren? Ich suche nach einer Statistik, die für Dokument A hoch ist, weil sie viele verschiedene Wörter enthält, die selten vorkommen, und niedrig für Dokument B, weil sie ein Wort (oder einige Wörter) enthält, die häufig vorkommen. Wie …
Ich habe gelesen: https://en.wikipedia.org/wiki/Tf%E2%80%93idf#Definition Aber ich kann nicht genau verstehen, warum die Formel so konstruiert wurde, wie sie ist. Was ich tue Verstehe: iDF sollte auf einer bestimmten Ebene messen, wie häufig ein Begriff S in jedem der Dokumente vorkommt, wobei der Wert abnimmt, wenn der Begriff häufiger vorkommt. Aus …
Ein traditioneller Ansatz der Feature-Konstruktion für das Text-Mining ist der Bag-of-Word-Ansatz und kann mithilfe von tf-idf zum Einrichten des Feature-Vektors, der ein bestimmtes Textdokument charakterisiert, erweitert werden. Gegenwärtig versuche ich, ein Bi-Gramm-Sprachmodell oder (N-Gramm) zum Erstellen eines Merkmalsvektors zu verwenden, weiß aber nicht genau, wie das geht? Können wir einfach …
Ich versuche zum Beispiel, Strings über das Programmieren mit anderen Strings über das Programmieren, Strings über die Physik mit anderen Strings über die Physik usw. für eine breite Palette von Themen zu gruppieren. Trotz des krassen theoretischen sprachlichen Aspekts des Problems möchte ich dies tatsächlich mit Programmierung / Software tun. …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.