Ich benutze Python Keras packagefür neuronales Netzwerk. Dies ist der Link . Ist batch_sizegleich der Anzahl von Testproben? Aus Wikipedia haben wir diese Informationen: In anderen Fällen kann das Auswerten des Summengradienten jedoch teure Auswertungen der Gradienten von allen Summandenfunktionen erfordern. Wenn der Trainingssatz riesig ist und keine einfachen Formeln …
Muss die Funktionsweise der Ebene "Einbetten" in der Keras-Bibliothek verstehen. Ich führe den folgenden Code in Python aus import numpy as np from keras.models import Sequential from keras.layers import Embedding model = Sequential() model.add(Embedding(5, 2, input_length=5)) input_array = np.random.randint(5, size=(1, 5)) model.compile('rmsprop', 'mse') output_array = model.predict(input_array) was die folgende Ausgabe …
Ich trainiere ein neuronales Netzwerk, um eine Menge von Objekten in n-Klassen zu klassifizieren. Jedes Objekt kann gleichzeitig mehreren Klassen angehören (Multi-Class, Multi-Label). Ich habe gelesen, dass bei Problemen mit mehreren Klassen generell empfohlen wird, anstelle von mse Softmax und kategoriale Kreuzentropie als Verlustfunktion zu verwenden, und ich verstehe mehr …
Hier ein Blick: Sie können genau sehen, wo die Trainingsdaten enden. Die Trainingsdaten reichen von bis .- 1-1-1111 Ich habe Keras und ein dichtes 1-100-100-2-Netzwerk mit Tanh-Aktivierung verwendet. Ich berechne das Ergebnis aus zwei Werten, p und q als p / q. Auf diese Weise kann ich eine beliebige Anzahl …
Ich versuche das in der Keras-Dokumentation beschriebene Beispiel mit dem Namen "Stacked LSTM for Sequence Classification" (siehe Code unten) zu verwenden und kann den input_shapeParameter im Kontext meiner Daten nicht herausfinden . Ich habe als Eingabe eine Matrix von Sequenzen von 25 möglichen ganzen Zahlen in einem aufgefüllten Folge maximaler …
Ich wollte durch die keras Faltung docs , und ich habe zwei Arten von convultuion Conv1D und Conv2D gefunden. Ich habe eine Websuche durchgeführt und das ist, was ich über Conv1D und Conv2D verstehe. Conv1D wird für Sequenzen und Conv2D für Bilder verwendet. Ich dachte immer, dass Faltungsnetzwerke nur für …
Können wir Bilder mit variabler Größe als Eingabe für die Objekterkennung in ein Faltungsnetzwerk geben? Wenn möglich, wie können wir das tun? Wenn wir jedoch versuchen, das Bild zuzuschneiden, verlieren wir einen Teil des Bildes, und wenn wir versuchen, die Größe zu ändern, geht die Klarheit des Bildes verloren. Bedeutet …
Als Folge dessen, dass mein neuronales Netzwerk nicht einmal die euklidische Distanz lernen kann, vereinfachte ich noch mehr und versuchte, eine einzelne ReLU (mit zufälliger Gewichtung) zu einer einzelnen ReLU zu trainieren. Dies ist das einfachste Netzwerk, das es gibt, und dennoch scheitert die Konvergenz in der Hälfte der Zeit. …
Wie wird die Einbettungsschicht in der Keras-Einbettungsschicht trainiert? (Sagen wir, wir verwenden das Tensorflow-Backend, was bedeutet, dass es word2vec, Glove oder Fasttext ähnelt.) Angenommen, wir verwenden keine vorab trainierte Einbettung.
Das LSTM im folgenden Keras-Code input_t = Input((4, 1)) output_t = LSTM(1)(input_t) model = Model(inputs=input_t, outputs=output_t) print(model.summary()) kann dargestellt werden als Ich verstehe, dass, wenn wir model.predict(np.array([[[1],[2],[3],[4]]]))die (einzige) LSTM-Einheit aufrufen , zuerst der Vektor [1], dann [2] plus die Rückmeldung von der vorherigen Eingabe usw. bis zum Vektor [4] verarbeitet …
Geschlossen. Diese Frage ist nicht zum Thema . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so dass es beim Thema für Kreuz Validated. Geschlossen im vergangenen Jahr . Das Training nach 15 Epochen mit dem CIFAR-10-Datensatz scheint den Validierungsverlust nicht mehr zu verringern …
Nachdem ich mir diese Frage angesehen habe: Beim Versuch, die lineare Regression mit Keras zu emulieren , habe ich versucht, mein eigenes Beispiel nur zu Studienzwecken zu erstellen und meine Intuition zu entwickeln. Ich habe einen einfachen Datensatz heruntergeladen und eine Spalte verwendet, um eine andere vorherzusagen. Die Daten sehen …
Ich benutze das LSTM-Netzwerk in Keras. Während des Trainings schwankt der Verlust stark und ich verstehe nicht, warum das passieren würde. Hier ist das NN, das ich ursprünglich verwendet habe: Und hier sind der Verlust und die Genauigkeit während des Trainings: (Beachten Sie, dass die Genauigkeit letztendlich tatsächlich 100% erreicht, …
Ich bin neu bei Keras und brauche deine Hilfe. Ich trainiere ein neuronales Netz in Keras und meine Verlustfunktion ist die Quadrat-Differenz s / w-Netzleistung und der Zielwert. Ich möchte dies mit Gradient Descent optimieren. Nachdem ich einige Links im Internet durchgesehen habe, habe ich festgestellt, dass es drei Arten …
Also versuche ich, mir neuronale Netze beizubringen (für Regressionsanwendungen, ohne Bilder von Katzen zu klassifizieren). Meine ersten Experimente waren das Trainieren eines Netzwerks zur Implementierung eines FIR-Filters und einer diskreten Fourier-Transformation (Training für "Vorher" - und "Nachher" -Signale), da dies beide lineare Operationen sind, die von einer einzelnen Schicht ohne …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.