Als «deep-learning» getaggte Fragen

Ein Bereich des maschinellen Lernens, der sich mit dem Lernen hierarchischer Darstellungen der Daten befasst, hauptsächlich mit tiefen neuronalen Netzen.



2
Warum sollten Sie in neuronalen Netzen Gradientenmethoden anstelle anderer Metaheuristiken verwenden?
Warum werden beim Training tiefer und flacher neuronaler Netze im Gegensatz zu anderen Metaheuristiken häufig Gradientenmethoden (z. B. Gradientenabstieg, Nesterov, Newton-Raphson) verwendet? Mit Metaheuristik meine ich Methoden wie simuliertes Tempern, Optimierung von Ameisenkolonien usw., die entwickelt wurden, um zu vermeiden, dass sie in einem lokalen Minimum hängen bleiben.

2
Wie und warum verwendet die Batch-Normalisierung gleitende Mittelwerte, um die Genauigkeit des Modells während des Trainings zu verfolgen?
Ich habe das Batch-Normalisierungspapier ( 1) gelesen und nicht verstanden, dass es notwendig ist, gleitende Durchschnitte zu verwenden, um die Genauigkeit des Modells zu verfolgen, und selbst wenn ich akzeptiere, dass dies das Richtige ist, verstehe ich es nicht was sie genau tun. Nach meinem Verständnis (was ich falsch finde) …


3
Bedeutung des Bias-Knotens in neuronalen Netzen
Ich bin gespannt, wie wichtig der Bias-Knoten für die Wirksamkeit moderner neuronaler Netze ist. Ich kann leicht verstehen, dass es in einem flachen Netzwerk mit nur wenigen Eingabevariablen wichtig sein kann. Moderne neuronale Netze wie das Deep Learning verfügen jedoch häufig über eine große Anzahl von Eingabevariablen, um zu entscheiden, …


4
Wann sollte ich einen variablen Autoencoder anstelle eines Autoencoders verwenden?
Ich verstehe die Grundstruktur von variierendem Autoencoder und normalem (deterministischem) Autoencoder und die Mathematik dahinter, aber wann und warum würde ich eine Art von Autoencoder der anderen vorziehen? Alles, woran ich denken kann, ist die vorherige Verteilung latenter Variablen von variationalem Autoencoder, die es uns ermöglicht, die latenten Variablen abzutasten …


3
Ikonenhafte (Spielzeug-) Modelle neuronaler Netze
Meine Physikprofessoren an der Graduiertenschule sowie der Nobelpreisträger Feynman präsentierten immer das, was sie Spielzeugmodelle nannten, um grundlegende Konzepte und Methoden der Physik wie den harmonischen Oszillator, das Pendel, den Kreisel und die Black Box zu veranschaulichen. Welche Spielzeugmodelle werden verwendet, um die grundlegenden Konzepte und Methoden zu veranschaulichen, die …

2
Deep Learning vs. Entscheidungsbäume und Methoden fördern
Ich suche nach Artikeln oder Texten, die vergleichen und diskutieren (entweder empirisch oder theoretisch): Boosting- und Entscheidungsbaum- Algorithmen wie Random Forests oder AdaBoost und GentleBoost werden auf Entscheidungsbäume angewendet. mit Deep Learning Methoden wie Restricted Boltzmann Machines , Hierarchical Temporal Memory , Convolutional Neural Networks , etc. Kennt jemand einen …


2
Sollten Trainingsmuster, die zufällig für Mini-Batch-Trainingsnetze gezogen wurden, ersatzlos gezogen werden?
Wir definieren eine Epoche, in der alle verfügbaren Trainingsmuster durchlaufen wurden, und die Mini-Batch-Größe als die Anzahl der Muster, über die wir den Durchschnitt bilden, um die Aktualisierungen der Gewichte / Vorspannungen zu finden, die zum Abstieg des Gradienten erforderlich sind. Meine Frage ist, ob wir aus den Trainingsbeispielen ersatzlos …

5
Was ist der Unterschied zwischen 'Transfer Learning' und 'Domain Adaptation'?
Gibt es einen Unterschied zwischen 'Transfer Learning' und 'Domain Adaptation'? Ich weiß nichts über den Kontext, aber ich verstehe, dass wir einen Datensatz 1 haben und darauf trainieren, woraufhin wir einen weiteren Datensatz 2 haben, für den wir unser Modell anpassen möchten, ohne von Grund auf neu zu trainieren, für …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.