Als «deep-learning» getaggte Fragen

Ein Bereich des maschinellen Lernens, der sich mit dem Lernen hierarchischer Darstellungen der Daten befasst, hauptsächlich mit tiefen neuronalen Netzen.



1
Was sind Autoencoder für Variationen und für welche Lernaufgaben werden sie verwendet?
Gemäß dieser und dieser Antwort, scheinen Autoencoder eine Technik zu sein , das neuronale Netze für Dimensionsreduktion verwendet. Ich möchte zusätzlich wissen , was ist ein Variationsautoencoder (seine wichtigsten Unterschiede / Vorteile gegenüber einem „traditionellen“ Autoencoder) und auch das, was die wichtigsten Lernaufgaben sind diese Algorithmen für verwendet werden.

3
Was ist der Grund, warum der Adam Optimizer für den Wert seiner Hyperparameter als robust angesehen wird?
Ich habe über den Adam-Optimierer für Deep Learning gelesen und bin in dem neuen Buch Deep Learning von Bengio, Goodfellow und Courville auf folgenden Satz gestoßen: Adam wird allgemein als ziemlich robust gegenüber der Auswahl von Hyperparametern angesehen, obwohl die Lernrate manchmal von der vorgeschlagenen Standardeinstellung geändert werden muss. Wenn …

2
Wie bekommt Krizhevskys '12 CNN 253.440 Neuronen in der ersten Schicht?
In Alex Krizhevsky et al. Imagenet-Klassifikation mit tiefen neuronalen Faltungsnetzen zählt sie die Anzahl der Neuronen in jeder Schicht auf (siehe Abbildung unten). Die Eingabe des Netzwerks ist 150.528-dimensional und die Anzahl der Neuronen in den verbleibenden Schichten des Netzwerks wird durch 253.440–186.624–64.896–64.896–43.264– 4096–4096–1000 angegeben. Eine 3D-Ansicht Die Anzahl der …

2
Wie initialisiere ich die Elemente der Filtermatrix?
Ich versuche, Faltungs-Neuronale Netze besser zu verstehen, indem ich Python-Code schreibe, der nicht von Bibliotheken (wie Convnet oder TensorFlow) abhängt Durchführen einer Faltung an einem Bild. Ich versuche, die Implementierungsdetails im Schritt zwischen Feature-Maps in der folgenden Abbildung zu verstehen, in der die Layer eines CNN dargestellt sind. Nach diesem …


1
Was genau sind Aufmerksamkeitsmechanismen?
In den letzten Jahren wurden in verschiedenen Deep-Learning-Artikeln Aufmerksamkeitsmechanismen eingesetzt. Ilya Sutskever, Forschungsleiter bei Open AI, hat sie begeistert gelobt: https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0 Eugenio Culurciello von der Purdue University hat gefordert, dass RNNs und LSTMs zugunsten rein auf Aufmerksamkeit basierender neuronaler Netze aufgegeben werden sollten: https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0 Dies scheint übertrieben, aber es ist …



3
Hat das Bildformat (png, jpg, gif) Einfluss darauf, wie ein neuronales Netz für die Bilderkennung trainiert wird?
Mir ist bewusst, dass es viele Fortschritte in Bezug auf Bilderkennung, Bildklassifizierung usw. bei tiefen, faltungsbedingten neuronalen Netzen gegeben hat. Aber wenn ich ein Netz beispielsweise mit PNG-Bildern trainiere, funktioniert dies nur für Bilder, die so codiert sind? Welche anderen Bildeigenschaften beeinflussen dies? (Alphakanal, Interlacing, Auflösung usw.?)

2
Eingeschränkte Boltzmann-Maschine: Wie wird sie beim maschinellen Lernen eingesetzt?
Hintergrund: Ja, die eingeschränkte Boltzmann-Maschine (RBM) kann verwendet werden, um die Gewichte eines neuronalen Netzwerks zu initiieren. Außerdem KANN es "Schicht für Schicht" verwendet werden, um ein tiefes Glaubensnetzwerk aufzubauen (d. H. Eine te Schicht auf der ( n - 1 ) -ten Schicht zu trainieren und dann die zu …

2
Stärkung neuronaler Netze
Vor kurzem habe ich mich mit dem Erlernen von Boosting-Algorithmen wie Adaboost und Gradienten-Boost befasst, und ich kenne die Tatsache, dass der am häufigsten verwendete schwache Lernende Bäume sind. Ich möchte wirklich wissen, ob es in letzter Zeit einige erfolgreiche Beispiele (ich meine einige Artikel oder Artikel) für die Verwendung …

2
Wie funktionieren Engpassarchitekturen in neuronalen Netzwerken?
Wir definieren eine Engpassarchitektur als den Typ, der im ResNet-Artikel zu finden ist, in dem [zwei 3x3-Conv-Ebenen] durch [eine 1x1- Conv-Ebene , eine 3x3-Conv-Ebene und eine weitere 1x1-Conv-Ebene] ersetzt werden. Ich verstehe, dass die 1x1-Conv-Ebenen als eine Form der Dimensionsreduktion (und Wiederherstellung) verwendet werden, die in einem anderen Beitrag erläutert …

4
Warum ist die Softmax-Ausgabe kein gutes Unsicherheitsmaß für Deep Learning-Modelle?
Ich arbeite seit einiger Zeit mit Convolutional Neural Networks (CNNs), hauptsächlich mit Bilddaten für die semantische Segmentierung / Instanzsegmentierung. Ich habe mir den Softmax der Netzwerkausgabe oft als "Heatmap" vorgestellt, um zu sehen, wie hoch die Aktivierungen pro Pixel für eine bestimmte Klasse sind. Ich habe niedrige Aktivierungen als "unsicher" …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.