Kumulative / kumulative Darstellung (oder „Visualisierung einer Lorenzkurve“)


11

Ich weiß nicht, wie solche Handlungen heißen, und deshalb habe ich dieser Frage nur einen dummen Titel gegeben.

Angenommen, ich habe einen geordneten Datensatz wie folgt

4253  4262  4270  4383  4394  4476  4635  ...

Jede Zahl entspricht der Anzahl der Beiträge, die ein bestimmter Benutzer zu einer Website beigetragen hat. Ich untersuche empirisch das hier definierte Phänomen der "Partizipationsungleichheit" .

Um es einfacher zu machen, möchte ich ein Diagramm erstellen, das es dem Leser ermöglicht, schnell Aussagen wie "10% der Benutzer tragen 50% der Daten bei" abzuleiten. Es sollte wahrscheinlich ähnlich aussehen wie diese zugegebenermaßen ziemlich miese Farbskizze:

Geben Sie hier die Bildbeschreibung ein

Ich habe keine Ahnung, wie das heißt, daher weiß ich nicht, wo ich suchen soll. Auch wenn jemand eine Implementierung in Rhätte, wäre das fantastisch.


6
Die Frage ist sehr gut gestellt (und ich liebe die Skizze). Schauen Sie sich ecdfin Rfür einen Start. Der Begriff ist "empirische kumulative Verteilungsfunktion". Möglicherweise interessieren Sie sich auch für "Wahrscheinlichkeitsdiagramme" und "QQ-Diagramme": Es handelt sich um Versionen des ECDF, die die Daten auf verschiedenen (nichtlinearen) Skalen anzeigen.
whuber

7
Lorenzkurve: siehe en.wikipedia.org/wiki/Lorenz_curve Das ist in R-Kreisen leicht zu suchen.
Nick Cox

Ich weiß ecdfund habe es schon einmal benutzt, aber auf die "klassische" Weise, dass die x-Achse die Anzahl der Buchungen und die y-Achse ihre Wahrscheinlichkeit anzeigt. Ich weiß nicht, wie ich so etwas machen soll.
wnstnsmth

3
@whuber Ich denke, "10% der Benutzer tragen 50% der Daten bei" ist eher eine Lorenz-Kurvenfrage. Eine Lorenzkurve ist ein PP-Plot.
Nick Cox

2
Schauen Sie sich dazu das Paket ineq in R an.
Metriken

Antworten:


6

Wenn Sie dies einfach mit den RBasisbefehlen tun möchten, können die folgenden Codes hilfreich sein.

Zuerst lesen Sie die Daten.

person<-rep(1:7)
data<-c(4253, 4262, 4270, 4383, 4394, 4476, 4635)

Dann können Sie den Beitrag jedes Benutzers sehen.

plot(person,data)
lines(person,data)

Geben Sie hier die Bildbeschreibung ein

Sie können auch sehen, wie viel die ersten zwei, drei, vier, ..., sieben Personen beitragen.

cdata<-cumsum(data)    
plot(person,cdata)
lines(person,cdata)

Geben Sie hier die Bildbeschreibung ein

Schließlich können Sie Ihr gewünschtes Diagramm (in Proportionen in beiden Achsen) mit den folgenden Befehlen erhalten:

plot(person/max(person),cdata/max(cdata),xlab="Top-contributing users",ylab="Data",col="red")
lines(person/max(person),cdata/max(cdata),col="red")

Geben Sie hier die Bildbeschreibung ein

Ich habe die Achsen so beschriftet, wie Sie es wollten. Sie erhalten einen klaren Überblick darüber, wie viel Prozent der Daten von einem bestimmten Personenanteil bereitgestellt werden.


3

Ich habe einen Weg gefunden, die Lorenz-Kurve schnell zu visualisieren ggplot2, was zu einer ästhetischeren und leichter zu interpretierenden Grafik führte. Aus diesem letzteren Grund habe ich die Lorenzkurve auf der diagonalen Linie gespiegelt, was zu einer intuitiveren Form führt, wenn Sie mich fragen. Es enthält auch Anmerkungszeilen, die die Erklärung des Diagramms erleichtern sollen (z. B. "Die 5% der am häufigsten beitragenden Benutzer machen 50% der Daten aus"). Achtung: Das Finden der richtigen Stelle für die Anmerkungszeile verwendet eine ziemlich idiotische Heuristik und funktioniert möglicherweise nicht mit einem kleineren Datensatz.

Lorenzkurve (modifiziert)

Beispieldaten:

data <- data.frame(lco = 
                     c(338L, 6317L, 79L, 36L, 3634L, 8633L, 3231L, 27L, 173L, 5934L, 
                       4476L, 1604L, 340L, 723L, 260L, 7008L, 7968L, 3854L, 4011L, 1596L, 
                       1428L, 587L, 1595L, 32L, 277L, 5201L, 133L, 407L, 676L, 1874L, 
                       1700L, 843L, 237L, 4270L, 2404L, 530L, 305L, 9344L, 720L, 1806L, 
                       35L, 790L, 1383L, 5522L, 178L, 75L, 6219L, 121L, 923L, 1123L, 
                       102L, 70L, 50L, 119L, 445L, 464L, 182L, 244L, 1358L, 7840L, 661L, 
                       70L, 132L, 634L, 4262L, 1872L, 345L, 11L, 28L, 284L, 626L, 1033L, 
                       26L, 798L, 13L, 480L, 44L, 339L, 259L, 312L, 262L, 67L, 1359L, 
                       1835L, 13L, 189L, 292L, 2152L, 215L, 39L, 1131L, 1323L, 700L, 
                       3271L, 1622L, 4669L, 125L, 281L, 277L, 232L, 1111L, 8669L, 7233L, 
                       9363L, 400L, 502L, 1425L, 904L, 2924L, 927L, 31L, 1132L, 200L, 
                       17L, 7602L, 12365L, 258L, 16L, 223L, 55L, 11L, 785L, 493L, 4L, 
                       1161L, 393L, 791L, 30L, 568L, 386L, 75L, 1882L, 674L, 29L, 4217L, 
                       332L, 103L, 332L, 30L, 168L, 277L, 176L, 49L, 19L, 76L, 144L, 
                       145L, 65L, 52L, 391L, 25L, 104L, 484L, 20L, 12L, 188L, 5677L, 
                       19L, 273L, 424L, 281L, 458L, 50L, 255L, 898L, 840L, 872L, 573L, 
                       874L, 8L, 35L, 235L, 22L, 229L, 158L, 59L, 147L, 544L, 24L, 325L, 
                       15L, 3L, 1531L, 1014L, 43L, 35L, 2176L, 934L, 253L, 69L, 784L, 
                       352L, 188L, 27L, 1516L, 322L, 1394L, 7686L, 13L, 812L, 349L, 
                       779L, 77L, 941L, 104L, 82L, 93L, 1206L, 24L, 6159L, 131L, 99L, 
                       1310L, 27L, 520L, 327L, 350L, 42L, 102L, 25L, 14L, 42L, 33L, 
                       469L, 177L, 119L, 64L, 75L, 190L, 82L, 82L, 473L, 51L, 9L, 49L, 
                       41L, 221L, 1778L, 4188L, 4L, 86L, 39L, 93L, 35L, 44L, 227L, 636L, 
                       589L, 332L, 22L, 15L, 50L, 147L, 32L, 134L, 133L, 629L, 168L, 
                       69L, 747L, 34L, 20L, 552L, 8L, 54L, 28L, 1437L, 83L, 3225L, 776L, 
                       784L, 247L, 33L, 40L, 368L, 104L, 420L, 357L, 9L, 164L, 7L, 227L, 
                       142L, 33L, 91L, 78L, 175L, 194L, 294L, 433L, 52L, 7L, 372L, 29L, 
                       220L, 371L, 375L, 233L, 12L, 35L, 795L, 35L, 43L, 50L, 57L, 32L, 
                       162L, 124L, 160L, 52L, 132L, 131L, 50L, 117L, 145L, 33L, 83L, 
                       33L, 123L, 43L, 27L, 91L, 25L, 2116L, 51L, 509L, 603L, 267L, 
                       10L, 10L, 51L, 6028L, 99L, 597L, 53L, 131L, 1084L, 1222L, 153L, 
                       70L, 746L, 437L, 82L, 299L, 1682L, 21L, 24L, 973L, 207L, 55L, 
                       116L, 47L, 48L, 149L, 100L, 690L, 129L, 80L, 1143L, 103L, 50L, 
                       242L, 708L, 316L, 83L, 61L, 15L, 203L, 435L, 474L, 47L, 718L, 
                       21L, 33L, 27L, 15L, 53L, 97L, 6L, 39L, 59L, 255L, 51L, 15L, 20L, 
                       514L, 74L, 20L, 319L, 14L, 14L, 45L, 36L, 625L, 5534L, 43L, 590L, 
                       43L, 29L, 233L, 135L, 174L, 20L, 335L, 106L, 230L, 64L, 3551L, 
                       524L, 72L, 44L, 16L, 98L, 37L, 62L, 390L, 83L, 28L, 3L, 63L, 
                       32L, 124L, 56L, 149L, 11L, 153L, 661L, 15L, 25L, 49L, 626L, 141L, 
                       38L, 23L, 123L, 530L, 47L, 6L, 18L, 222L, 391L, 71L, 75L, 234L, 
                       142L, 45L, 439L, 675L, 14L, 53L, 19L, 100L, 51L, 147L, 10L, 141L, 
                       979L, 97L, 330L, 112L, 71L, 4L, 9L, 124L, 141L, 145L, 302L, 122L, 
                       435L, 50L, 81L, 99L, 330L, 84L, 41L, 227L, 4L, 37L, 5L, 99L, 
                       210L, 7L, 183L, 67L, 98L, 157L, 96L, 150L, 22L, 288L, 391L, 188L, 
                       54L, 56L, 49L, 618L, 160L, 631L, 9L, 355L, 56L, 119L, 37L, 36L, 
                       153L, 110L, 126L, 335L, 121L, 80L, 113L, 62L, 97L, 22L, 72L, 
                       1742L, 1007L, 11L, 121L, 27L, 62L, 823L, 56L, 40L, 26L, 69L, 
                       120L, 516L, 11L, 146L, 245L, 174L, 1648L, 105L, 123L, 17L, 2565L, 
                       138L, 200L, 46L, 130L, 189L, 87L, 191L, 143L, 76L, 702L, 79L, 
                       67L, 166L, 3487L, 88L, 395L, 283L, 140L, 535L, 198L, 64L, 1033L, 
                       376L, 180L, 14L, 32L, 441L, 361L, 520L, 62L, 247L, 10L, 24L, 
                       721L, 176L, 164L, 33L, 44L, 12L, 30L, 13L, 157L, 122L, 161L, 
                       45L, 34L, 538L, 74L, 14L, 19L, 15L, 1714L, 437L, 16L, 12L, 130L, 
                       25L, 93L, 9L, 15L, 81L, 889L, 27L, 195L, 5L, 233L, 113L, 356L, 
                       51L, 146L, 6822L, 65L, 166L, 45L, 18L, 295L, 196L, 145L, 256L, 
                       14L, 8L, 89L, 32L, 20L, 239L, 68L, 63L, 21L, 102L, 158L, 1138L, 
                       48L, 113L, 144L, 83L, 93L, 3L, 1032L, 45L, 36L, 68L, 146L, 370L, 
                       25L, 10L, 290L, 858L, 19L, 17L, 64L, 42L, 38L, 711L, 144L, 58L, 
                       144L, 1736L, 188L, 38L, 58L, 91L, 255L, 58L, 307L, 4L, 9L, 60L, 
                       14L, 13L, 118L, 1549L, 108L, 483L, 34L, 1471L, 13L, 16L, 76L, 
                       163L, 147L, 75L, 520L, 4L, 59L, 73L, 32L, 24L, 656L, 16L, 2655L, 
                       38L, 20L, 1011L, 85L, 592L, 91L, 883L, 5174L, 42L, 17L, 88L, 
                       21L, 61L, 33L, 1726L, 46L, 387L, 920L, 120L, 134L, 72L, 144L, 
                       1603L, 646L, 45L, 282L, 56L, 19L, 41L, 69L, 151L, 632L, 47L, 
                       48L, 126L, 114L, 119L, 144L, 949L, 67L, 144L, 27L, 61L, 70L, 
                       287L, 64L, 323L, 27L, 149L, 1914L, 20L, 1077L, 21L, 70L, 59L, 
                       123L, 537L, 131L, 1226L, 2908L, 8L, 133L, 42L, 175L, 100L, 162L, 
                       494L, 414L, 2618L, 33L, 93L, 48L, 3676L, 553L, 705L, 58L, 268L, 
                       141L, 284L, 98L, 135L, 13L, 49L, 792L, 128L, 172L, 236L, 221L, 
                       596L, 35L, 241L, 10L, 193L, 189L, 26L, 27L, 47L, 100L, 398L, 
                       21L, 26L, 86L, 147L, 3639L, 161L, 60L, 106L, 111L, 42L, 11L, 
                       654L, 21L, 129L, 1152L, 224L, 49L, 12L, 22L, 73L, 207L, 165L, 
                       113L, 12L, 1224L, 177L, 6L, 390L, 2747L, 23L, 46L, 1166L, 805L, 
                       20L, 130L, 46L, 110L, 16L, 88L, 652L, 61L, 86L, 16L, 804L, 41L, 
                       4383L, 511L, 126L, 549L, 23L, 45L, 80L, 162L, 127L, 700L, 43L, 
                       147L, 102L, 84L, 67L, 57L, 30L, 55L, 274L, 314L, 847L, 203L, 
                       322L, 8350L, 101L, 10L, 122L, 54L, 120L, 10L, 22L, 327L, 234L, 
                       56L, 998L, 409L, 131L, 2163L, 81L, 19L, 6675L, 7L, 2182L, 1136L, 
                       71L, 15L, 286L, 133L, 132L, 37L, 144L, 28L, 392L, 870L, 312L, 
                       190L, 135L, 16L, 6L, 153L, 38L, 62L, 2710L, 36L, 61L, 37L, 88L, 
                       375L, 88L, 131L, 73L, 212L, 918L, 185L, 53L, 143L, 69L, 2231L, 
                       54L, 23L, 220L, 195L, 468L, 2009L, 364L, 54L, 277L, 1547L, 240L, 
                       1700L, 1533L, 374L, 363L, 35L, 97L, 19L, 87L, 67L, 22L, 267L, 
                       16L, 11L, 35L, 460L, 44L, 58L, 26L, 13L, 172L, 114L, 272L, 64L, 
                       254L, 49L, 440L, 329L, 48L, 93L, 10L, 70L, 17L, 120L, 5229L, 
                       118L, 133L, 43L, 2419L, 207L, 102L, 90L, 127L, 3939L, 14L, 5L, 
                       552L, 425L, 656L, 511L, 170L, 396L, 177L, 3680L, 111L, 21L, 320L, 
                       367L, 51L, 672L, 1675L, 59L, 91L, 281L, 113L, 19L, 37L, 65L, 
                       288L, 27L, 149L, 61L, 63L, 75L, 165L, 90L, 9L, 12L, 82L, 111L, 
                       157L))

Code:

# lorenz curve of user contribution
library(ineq)
library(ggplot2)
library(scales)
library(grid)
# compute lorenz curve
lcolc <- Lc(data$lco)
# bring lorenz curve in another format easily readable by ggplot2
# namely reverse the L column so that lorenz curve is mirrored on diagonal
# p stays p (the diagonal)
# Uprob contains the indices of the L's, but we need percentiles
lcdf <- data.frame(L = rev(1-lcolc$L), p = lcolc$p, Uprob = c(1:length(lcolc$L)/length(lcolc$L)))

# basic plot with the diagonal line and the L line
p <- ggplot(lcdf, aes(x = Uprob, y = L)) + geom_line(colour = hcl(h=15, l=65, c=100)) + geom_line(aes(x = p, y = p))
# compute annotation lines at 50 percent L (uses a heuristic)
index  <- which(lcdf$L >= 0.499 & lcdf$L <= 0.501)[1]

ypos <- lcdf$L[index]
yposs <- c(0,ypos)
xpos <- index/length(lcdf$L)
xposs <- c(0,xpos)
ypositions <- data.frame(x = xposs, y = c(ypos,ypos))
xpositions <- data.frame(x = c(xpos,xpos), y = yposs)
# add annotation line
p <- p + geom_line(data = ypositions, aes(x = x, y = y), 
                   linetype="dashed") + geom_line(data = xpositions, aes(x = x, y = y), 
                                                  linetype="dashed") 
# set axes and labels (namely insert custom breaks in scales)
p <- p + scale_x_continuous(breaks=c(0, xpos,0.25,0.5,0.75,1),
                            labels = percent_format()) + scale_y_continuous(
                                                                            labels = percent_format())
# add minimal theme
p <- p + theme_minimal() + xlab("Percentage of objects") + ylab("Percentage of events") 
# customize theme
p <- p + theme(plot.margin = unit(c(0.5,1,1,1), "cm"), 
               axis.title.x = element_text(vjust=-1),
               axis.title.y = element_text(angle=90, vjust=0),
               panel.grid.minor = element_blank(),
               plot.background = element_rect(fill = rgb(0.99,0.99,0.99), linetype=0)) 
# print plot
p

3
In der Literatur weiß ich, dass die Mehrheitskonvention bei weitem das Gegenteil von der hier ist, dh Achsen so auszutauschen, dass die Kurve nach unten konvex ist. Ungleichheit ist hier ein Schlüsselwort, insbesondere um detailliertere Arbeiten zu finden, insbesondere um diese Kurve zusammenzufassen, z. B. bei der Untersuchung der Einkommen in der Wirtschaft.
Nick Cox

-2

Zwei weitere Möglichkeiten, dies zu tun, da ich kürzlich für klinische Impfstoffstudien daran gearbeitet habe:

1.Verwenden Sie Hmisc Ecdf. Dies ist unkompliziert und zeigt, wie schwierig es ist, Details zum Ändern verschiedener Elemente des Diagramms herauszufinden.

2.Berechnen Sie die kumulative Verteilung und dann ist 1-kumulativ umgekehrt kumulativ. Zeichnen Sie die Umkehrung mit ggplot2 mit geom_step, wenn Sie eine Schrittfunktion im Diagramm mögen. Die folgende Funktion würde ecdf von Basis r verwenden, um Ihnen eine kumulative Verteilung zu geben, und dann 1-kumulativ:

     rcdf <- function (x) {
     cdf <- ecdf(x)
     y <- cdf(x)
    xrcdf <- 1-y
      }

im obigen rcdf ist eine benutzerdefinierte Funktion, die mit ecdf definiert wurde.


Nicht so. Die Lorenzkurve ist weder das ecdf noch dessen Ergänzung. Die beiden Achsen für die Lorenzkurve sind beide kumulative Wahrscheinlichkeiten; im Falle des ecdf ist nur einer.
Nick Cox

Die Antwort von @wnstnsmth enthält einen Datensatz und einen Code. Wenn Sie Ihren Code an seinen Daten ausprobieren, erhalten Sie ganz andere Objekte.
Nick Cox
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.