Der Welch-Satterthwaite df kann als skaliertes gewichtetes harmonisches Mittel der beiden Freiheitsgrade mit Gewichten im Verhältnis zu den entsprechenden Standardabweichungen dargestellt werden.
Der ursprüngliche Ausdruck lautet:
νW=(s21n1+s22n2)2s41n21ν1+s42n22ν2
Beachten Sie, dass ist die geschätzte Varianz des i - ten Stichprobenmittelwert oder das Quadrat des i -ten Standardfehler des Mittelwerts . Sei r = r 1 / r 2 (das Verhältnis der geschätzten Varianzen des Stichprobenmittels), sori=s2i/niithir=r1/r2
νW=(r1+r2)2r21ν1+r22ν2=(r1+r2)2r21+r22r21+r22r21ν1+r22ν2=(r+1)2r2+1r21+r22r21ν1+r22ν2
The first factor is 1+sech(log(r)), which increases from 1 at r=0 to 2 at r=1 and then decreases to 1 at r=∞; it's symmetric in logr.
The second factor is a weighted harmonic mean:
H(x––)=∑ni=1wi∑ni=1wixi.
of the d.f., where wi=r2i are the relative weights to the two d.f.
Which is to say, when r1/r2 is very large, it converges to ν1. When r1/r2 is very close to 0 it converges to ν2. When r1=r2 you get twice the harmonic mean of the d.f., and when s21=s22 you get the usual equal-variance t-test d.f., which is also the maximum possible value for νW.
--
With an equal-variance t-test, if the assumptions hold, the square of the denominator is a constant times a chi-square random variate.
The square of the denominator of the Welch t-test isn't (a constant times) a chi-square; however, it's often not too bad an approximation. A relevant discussion can be found here.
A more textbook-style derivation can be found here.