Ich habe 2 abhängige Variablen (DVs), deren Punktzahl durch die Menge von 7 unabhängigen Variablen (IVs) beeinflusst werden kann. DVs sind kontinuierlich, während der Satz von IVs aus einer Mischung aus kontinuierlichen und binär codierten Variablen besteht. (Im folgenden Code werden fortlaufende Variablen in Großbuchstaben und binäre Variablen in Kleinbuchstaben geschrieben.)
Ziel der Studie ist es herauszufinden, wie diese DVs durch IVs-Variablen beeinflusst werden. Ich schlug das folgende Modell der multivariaten multiplen Regression (MMR) vor:
my.model <- lm(cbind(A, B) ~ c + d + e + f + g + H + I)
Um die Ergebnisse zu interpretieren, nenne ich zwei Aussagen:
summary(manova(my.model))
Manova(my.model)
Die Ausgaben beider Aufrufe werden unten eingefügt und unterscheiden sich erheblich. Kann jemand bitte erläutern, welche der beiden Aussagen ausgewählt werden sollte, um die Ergebnisse von MMR richtig zusammenzufassen, und warum? Jeder Vorschlag wäre sehr dankbar.
Ausgabe mit summary(manova(my.model))
Anweisung:
> summary(manova(my.model))
Df Pillai approx F num Df den Df Pr(>F)
c 1 0.105295 5.8255 2 99 0.004057 **
d 1 0.085131 4.6061 2 99 0.012225 *
e 1 0.007886 0.3935 2 99 0.675773
f 1 0.036121 1.8550 2 99 0.161854
g 1 0.002103 0.1043 2 99 0.901049
H 1 0.228766 14.6828 2 99 2.605e-06 ***
I 1 0.011752 0.5887 2 99 0.556999
Residuals 100
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Ausgabe mit Manova(my.model)
Anweisung:
> library(car)
> Manova(my.model)
Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)
c 1 0.030928 1.5798 2 99 0.21117
d 1 0.079422 4.2706 2 99 0.01663 *
e 1 0.003067 0.1523 2 99 0.85893
f 1 0.029812 1.5210 2 99 0.22355
g 1 0.004331 0.2153 2 99 0.80668
H 1 0.229303 14.7276 2 99 2.516e-06 ***
I 1 0.011752 0.5887 2 99 0.55700
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1