Dies ist die Nachricht, die beim Ausführen eines Skripts empfangen wird, um zu überprüfen, ob Tensorflow funktioniert:
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcurand.so.8.0 locally
W tensorflow/core/platform/cpu_feature_guard.cc:95] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:95] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:910] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
Mir ist aufgefallen, dass SSE4.2 und AVX erwähnt wurden.
- Was sind SSE4.2 und AVX?
- Wie verbessern diese SSE4.2 und AVX die CPU-Berechnungen für Tensorflow-Aufgaben?
- Wie kann Tensorflow mithilfe der beiden Bibliotheken kompiliert werden?
NOTE on gcc 5 or later: the binary pip packages available on the TensorFlow website are built with gcc 4, which uses the older ABI. To make your build compatible with the older ABI, you need to add --cxxopt="-D_GLIBCXX_USE_CXX11_ABI=0" to your bazel build command. ABI compatibility allows custom ops built against the TensorFlow pip package to continue to work against your built package.
von hier aus tensorflow.org/install/install_sources
bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=-mfpmath=both --config=cuda -k //tensorflow/tools/pip_package:build_pip_package
auf Xeon E5 v3 zu bauen , die mir eine 3-fache Verbesserung der 8k-Matmul-CPU-Geschwindigkeit im Vergleich zur offiziellen Version (0,35 -> 1,05 T ops / s)