Wenn Ihnen die Leistung wichtig ist, stellen Sie sicher, dass Sie Zeit haben:
import sys
import timeit
import pandas as pd
print('Python %s on %s' % (sys.version, sys.platform))
print('Pandas version %s' % pd.__version__)
repeat = 3
numbers = 100
def time(statement, _setup=None):
print (min(
timeit.Timer(statement, setup=_setup or setup).repeat(
repeat, numbers)))
print("Format %m/%d/%y")
setup = """import pandas as pd
import io
data = io.StringIO('''\
ProductCode,Date
''' + '''\
x1,07/29/15
x2,07/29/15
x3,07/29/15
x4,07/30/15
x5,07/29/15
x6,07/29/15
x7,07/29/15
y7,08/05/15
x8,08/05/15
z3,08/05/15
''' * 100)"""
time('pd.read_csv(data); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"]); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
'infer_datetime_format=True); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
'date_parser=lambda x: pd.datetime.strptime(x, "%m/%d/%y")); data.seek(0)')
print("Format %Y-%m-%d %H:%M:%S")
setup = """import pandas as pd
import io
data = io.StringIO('''\
ProductCode,Date
''' + '''\
x1,2016-10-15 00:00:43
x2,2016-10-15 00:00:56
x3,2016-10-15 00:00:56
x4,2016-10-15 00:00:12
x5,2016-10-15 00:00:34
x6,2016-10-15 00:00:55
x7,2016-10-15 00:00:06
y7,2016-10-15 00:00:01
x8,2016-10-15 00:00:00
z3,2016-10-15 00:00:02
''' * 1000)"""
time('pd.read_csv(data); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"]); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
'infer_datetime_format=True); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
'date_parser=lambda x: pd.datetime.strptime(x, "%Y-%m-%d %H:%M:%S")); data.seek(0)')
Drucke:
Python 3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 03:13:28)
[Clang 6.0 (clang-600.0.57)] on darwin
Pandas version 0.23.4
Format %m/%d/%y
0.19123052499999993
8.20691274
8.143124389
1.2384357139999977
Format %Y-%m-%d %H:%M:%S
0.5238807110000039
0.9202787830000005
0.9832778819999959
12.002349824999996
Bei einem iso8601-formatierten Datum ( %Y-%m-%d %H:%M:%S
anscheinend ein iso8601-formatiertes Datum, ich denke, das T kann gelöscht und durch ein Leerzeichen ersetzt werden) sollten Sie also nicht angeben infer_datetime_format
(was bei allgemeineren offenbar auch keinen Unterschied macht) und Ihr eigenes übergeben Parser in nur lähmt Leistung. Auf der anderen Seite date_parser
macht es einen Unterschied mit nicht so Standard-Tagesformaten. Stellen Sie sicher, dass Sie wie gewohnt Zeit haben, bevor Sie optimieren.