Als «optimization» getaggte Fragen

In der Statistik bezieht sich dies auf die Auswahl eines Schätzers eines Parameters durch Maximieren oder Minimieren einer Funktion der Daten. Ein sehr häufiges Beispiel ist die Auswahl eines Schätzers, der die Gelenkdichte (oder Massenfunktion) der beobachteten Daten maximiert, die als Maximum Likelihood Estimation (MLE) bezeichnet werden.

8
Lernrate wählen
Ich arbeite derzeit an der Implementierung von Stochastic Gradient Descent SGDfür neuronale Netze unter Verwendung von Backpropagation, und obwohl ich den Zweck verstehe, habe ich einige Fragen zur Auswahl von Werten für die Lernrate. Bezieht sich die Lernrate auf die Form des Fehlergradienten, da sie die Abstiegsrate vorgibt? Wenn ja, …






2
Warum werden genetische Algorithmen nicht zur Optimierung neuronaler Netze verwendet?
Nach meinem Verständnis sind genetische Algorithmen leistungsstarke Werkzeuge für die Optimierung mehrerer Ziele. Darüber hinaus ist das Trainieren neuronaler Netze (besonders tiefer Netze) schwierig und mit vielen Problemen verbunden (nicht konvexe Kostenfunktionen - lokale Minima, verschwinden- de und explodierende Gradienten usw.). Ich bin auch der Meinung, dass konzeptionelles Training eines …


2
Warum nicht immer die ADAM-Optimierungstechnik verwenden?
Es scheint, dass der Optimierer für die adaptive Momentschätzung (Adam) fast immer besser funktioniert (schneller und zuverlässiger, wenn ein globales Minimum erreicht wird), wenn die Kostenfunktion beim Trainieren neuronaler Netze minimiert wird. Warum nicht immer Adam benutzen? Warum sollte man sich überhaupt die Mühe machen, RMSProp oder Impulsoptimierer zu verwenden?

1
Wie viele Features sollen mit Random Forests getestet werden?
Auf der Wikipedia-Seite, die "Die Elemente des statistischen Lernens" zitiert, heißt es: Für ein Klassifizierungsproblem mit Merkmalen gilt in der Regel ⌊ √ppp -Funktionen werden in jeder Aufteilung verwendet.⌊ p-√⌋⌊p⌋\lfloor \sqrt{p}\rfloor Ich verstehe, dass dies eine ziemlich gut fundierte Vermutung ist und wahrscheinlich durch empirische Beweise bestätigt wurde, aber gibt …

1
Fisher Scoring v / s Koordinatenabstieg für MLE in R.
Die R-Basisfunktion glm()verwendet Fishers Scoring für MLE, während die glmnetanscheinend die Koordinatenabstiegsmethode verwendet, um dieselbe Gleichung zu lösen. Der Koordinatenabstieg ist zeiteffizienter als das Fisher-Scoring, da das Fisher-Scoring zusätzlich zu einigen anderen Matrixoperationen die Ableitungsmatrix zweiter Ordnung berechnet. Dies ist teuer in der Durchführung, während der Koordinatenabstieg dieselbe Aufgabe in …

3
Beste Sprachen für wissenschaftliches Rechnen [geschlossen]
Geschlossen . Diese Frage muss fokussierter sein . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so, dass sie sich nur auf ein Problem konzentriert, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 5 Jahren . Es scheint, als ob in den meisten Sprachen …
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 

2
Wann sollte man eine lineare Regression oder eine Entscheidungsbaum- oder eine zufällige Waldregression wählen? [geschlossen]
Geschlossen . Diese Frage muss fokussierter sein . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so, dass sie sich nur auf ein Problem konzentriert, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 4 Jahren . Ich arbeite an einem Projekt und habe Schwierigkeiten …
10 machine-learning  algorithms  random-forest  linear-regression  decision-trees  machine-learning  predictive-modeling  forecast  r  clustering  similarity  data-mining  dataset  statistics  text-mining  text-mining  data-cleaning  data-wrangling  machine-learning  classification  algorithms  xgboost  data-mining  dataset  dataset  regression  graphs  svm  unbalanced-classes  cross-validation  optimization  hyperparameter  genetic-algorithms  visualization  predictive-modeling  correlation  machine-learning  predictive-modeling  apache-spark  statistics  normalization  apache-spark  map-reduce  r  correlation  confusion-matrix  r  data-cleaning  classification  terminology  dataset  image-classification  machine-learning  regression  apache-spark  machine-learning  data-mining  nlp  parsing  machine-learning  dimensionality-reduction  visualization  clustering  multiclass-classification  evaluation  unsupervised-learning  machine-learning  machine-learning  data-mining  supervised-learning  unsupervised-learning  machine-learning  data-mining  classification  statistics  predictive-modeling  data-mining  clustering  python  pandas  machine-learning  dataset  data-cleaning  data  bigdata  software-recommendation 

2
Warum führt die Lernrate dazu, dass die Gewichte meines neuronalen Netzwerks in die Höhe schnellen?
Ich benutze Tensorflow, um einfache neuronale Netze für ein bisschen Forschung zu schreiben, und ich hatte während des Trainings viele Probleme mit 'Nan'-Gewichten. Ich habe viele verschiedene Lösungen ausprobiert, wie das Ändern des Optimierers, das Ändern des Verlusts, der Datengröße usw., aber ohne Erfolg. Schließlich bemerkte ich, dass eine Änderung …

2
Kann es bei Advanced Optimization-Algorithmen zu einer Überanpassung kommen?
Während eines Online-Kurses über maschinelles Lernen von Andrew Ng auf coursera stieß ich auf ein Thema namens Überanpassung . Ich weiß, dass es auftreten kann, wenn ein Gradientenabstieg in einer linearen oder logistischen Regression verwendet wird, aber kann es auftreten, wenn erweiterte Optimierungsalgorithmen wie "Gradient konjugieren", "BFGS" und "L-BFGS" verwendet …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.