Als «encoding» getaggte Fragen

6
Codierungsmerkmale wie Monat und Stunde als kategorial oder numerisch?
Ist es besser, Features wie Monat und Stunde als Faktor oder numerisch in einem Modell für maschinelles Lernen zu codieren? Einerseits halte ich die numerische Codierung für sinnvoll, da die Zeit vorwärts geht (auf den fünften Monat folgt der sechste Monat), andererseits halte ich die kategoriale Codierung aufgrund der zyklischen …


3
Unterschied zwischen OrdinalEncoder und LabelEncoder
Nachdem ich ein Buch über ML durchgesehen hatte, ging ich die offizielle Dokumentation von scikit-learn learn durch und stieß auf Folgendes: In der Dokumentation wird darüber berichtet, sklearn.preprocessing.OrdinalEncoder()während es in dem Buch, über das es gegeben wurde sklearn.preprocessing.LabelEncoder(), für mich gleich aussah, als ich ihre Funktionalität überprüfte. Kann mir bitte …


1
Wie gehe ich mit String-Labels in der Mehrklassenklassifikation mit Keras um?
Ich bin Neuling in maschinellem Lernen und Keras und arbeite jetzt an einem Problem der Klassifizierung von Bildern mit Keras. Die Eingabe ist Bild markiert. Nach einer gewissen Vorverarbeitung werden die Trainingsdaten in der Python-Liste wie folgt dargestellt: [["dog", "path/to/dog/imageX.jpg"],["cat", "path/to/cat/imageX.jpg"], ["bird", "path/to/cat/imageX.jpg"]] Die Klassenbezeichnungen lauten "Hund", "Katze" und "Vogel". …

5
Vergrößere die seaborn Heatmap
Ich erstelle einen corr()DF aus einem Original-DF. Die corr()df herauskommen 70 X 70 , und es ist unmöglich , die Heatmap sichtbar zu machen ... sns.heatmap(df). Wenn ich versuche, das anzuzeigen corr = df.corr(), passt die Tabelle nicht auf den Bildschirm und ich kann alle Zusammenhänge sehen. Ist es eine …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

1
Was ist der Unterschied zwischen globalen und universellen Komprimierungsmethoden?
Ich verstehe, dass Komprimierungsmethoden in zwei Hauptgruppen aufgeteilt werden können: global lokal Die erste Menge funktioniert unabhängig von den verarbeiteten Daten, dh, sie stützt sich auf keine Dateneigenschaften und muss daher (vor der eigentlichen Komprimierung) keine Vorverarbeitung für einen Teil der Datenmenge durchführen. Auf der anderen Seite analysieren lokale Methoden …

1
Wie viele LSTM-Zellen soll ich verwenden?
Gibt es Faustregeln (oder tatsächliche Regeln) für die minimale, maximale und "angemessene" Anzahl von LSTM-Zellen, die ich verwenden sollte? Insbesondere beziehe ich mich auf BasicLSTMCell von TensorFlow und num_unitsEigenschaft. Bitte nehmen Sie an, dass ich ein Klassifizierungsproblem habe, das definiert ist durch: t - number of time steps n - …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

4
Eine Hot-Coding-Alternative für große kategoriale Werte?
Hallo, Datenrahmen mit großen kategorialen Werten über 1600 Kategorien gibt es eine Möglichkeit, Alternativen zu finden, damit ich nicht über 1600 Spalten habe. Ich fand diesen unten interessanten Link http://amunategui.github.io/feature-hashing/#sourcecode Aber sie konvertieren zu Klasse / Objekt, was ich nicht will. Ich möchte meine endgültige Ausgabe als Datenrahmen, damit ich …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.