Als «efficiency» getaggte Fragen

Effizienz bei der algorithmischen Verarbeitung ist normalerweise mit der Ressourcennutzung verbunden. Die Metriken zur Bewertung der Effizienz eines Prozesses berücksichtigen üblicherweise die Ausführungszeit, die Speicher- / Festplatten- oder Speicheranforderungen, die Netzwerknutzung und den Stromverbrauch.

12
Wie groß ist Big Data?
Viele Menschen verwenden den Begriff Big Data eher kommerziell , um darauf hinzuweisen, dass große Datenmengen in die Berechnung einbezogen sind und daher potenzielle Lösungen eine gute Leistung aufweisen müssen. Natürlich sind Big Data immer mit Begriffen wie Skalierbarkeit und Effizienz verbunden, aber was genau definiert ein Problem als Big …

5
Wann ist ein Modell Underfitted?
Die Logik besagt oft, dass durch die Unteranpassung eines Modells dessen Generalisierungskapazität erhöht wird. Trotzdem verschlechtern sich die Modelle zu einem bestimmten Zeitpunkt eindeutig, unabhängig von der Komplexität der Daten. Woher wissen Sie, dass Ihr Modell die richtige Balance gefunden hat und nicht den Daten entspricht, die es modellieren möchte? …

5
Vergrößere die seaborn Heatmap
Ich erstelle einen corr()DF aus einem Original-DF. Die corr()df herauskommen 70 X 70 , und es ist unmöglich , die Heatmap sichtbar zu machen ... sns.heatmap(df). Wenn ich versuche, das anzuzeigen corr = df.corr(), passt die Tabelle nicht auf den Bildschirm und ich kann alle Zusammenhänge sehen. Ist es eine …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

4
Suchen Sie beispielsweise nach Infrastruktur-Stacks / Workflows / Pipelines
Ich versuche zu verstehen, wie alle "Big Data" -Komponenten in einem realen Anwendungsfall zusammenspielen, z. B. Hadoop, Monogodb / NOSQL, Storm, Kafka, ... Ich weiß, dass dies eine ziemlich breite Palette von Werkzeugen ist, die für verwendet werden verschiedene Typen, aber ich möchte mehr über deren Interaktion in Anwendungen erfahren, …

1
XGBRegressor vs. xgboost.train großer Geschwindigkeitsunterschied?
Wenn ich mein Modell mit dem folgenden Code trainiere: import xgboost as xg params = {'max_depth':3, 'min_child_weight':10, 'learning_rate':0.3, 'subsample':0.5, 'colsample_bytree':0.6, 'obj':'reg:linear', 'n_estimators':1000, 'eta':0.3} features = df[feature_columns] target = df[target_columns] dmatrix = xg.DMatrix(features.values, target.values, feature_names=features.columns.values) clf = xg.train(params, dmatrix) es endet in ungefähr 1 Minute. Wenn ich mein Modell mit der …

2
Kompromisse zwischen Storm und Hadoop (MapReduce)
Kann mir jemand freundlich etwas über die Kompromisse erzählen, die bei der Auswahl zwischen Storm und MapReduce in Hadoop Cluster für die Datenverarbeitung entstehen? Abgesehen von der offensichtlichen Tatsache ist Hadoop (Verarbeitung über MapReduce in einem Hadoop-Cluster) natürlich ein Stapelverarbeitungssystem und Storm ein Echtzeitverarbeitungssystem. Ich habe ein bisschen mit Hadoop …

2
Wird FPGrowth im häufigen Pattern Mining immer noch als „State of the Art“ angesehen?
Soweit ich die Entwicklung von Algorithmen zur Lösung des FPM-Problems (Frequent Pattern Mining) kenne, gibt es auf dem Weg der Verbesserungen einige Hauptkontrollpunkte. Erstens wurde der Apriori- Algorithmus 1993 von Agrawal et al. zusammen mit der Formalisierung des Problems. Der Algorithmus konnte Strip-Off einige Sätze aus den 2^n - 1Sätzen …

3
Beste Sprachen für wissenschaftliches Rechnen [geschlossen]
Geschlossen . Diese Frage muss fokussierter sein . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so, dass sie sich nur auf ein Problem konzentriert, indem Sie diesen Beitrag bearbeiten . Geschlossen vor 5 Jahren . Es scheint, als ob in den meisten Sprachen …
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 

3
Wie skalieren verschiedene statistische Techniken (Regression, PCA usw.) mit Stichprobengröße und -dimension?
Gibt es eine bekannte allgemeine Tabelle statistischer Techniken, die erklären, wie sie mit Stichprobengröße und -dimension skalieren? Zum Beispiel erzählte mir ein Freund neulich, dass die Berechnungszeit für das schnelle Sortieren eindimensionaler Daten der Größe n n * log (n) ist. Wenn wir zum Beispiel y gegen X zurückführen, wobei …



3
Vergleich von Experimenten, die über verschiedene Infrastrukturen laufen
Ich entwickle einen verteilten Algorithmus. Um die Effizienz zu verbessern, hängt er sowohl von der Anzahl der Festplatten (eine pro Maschine) als auch von einer effizienten Lastausgleichsstrategie ab. Mit mehr Festplatten können wir den Zeitaufwand für E / A reduzieren. Mit einer effizienten Lastausgleichsrichtlinie können wir Aufgaben ohne großen Aufwand …

2
Filtern von Spam aus abgerufenen Daten
Ich habe einmal gehört, dass das Filtern von Spam mithilfe von Blacklists kein guter Ansatz ist, da einige Benutzer, die nach Einträgen in Ihrem Datensatz suchen, möglicherweise nach bestimmten Informationen aus den blockierten Quellen suchen. Außerdem wäre es eine Belastung, den aktuellen Status jedes blockierten Spammers kontinuierlich zu überprüfen und …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.