Als «dropout» getaggte Fragen


4
Warum verbessert das Hinzufügen einer Dropout-Ebene die Tiefen- / Maschinenlernleistung, da durch das Dropout einige Neuronen aus dem Modell unterdrückt werden?
Wenn das Entfernen einiger Neuronen zu einem leistungsfähigeren Modell führt, warum nicht zunächst ein einfacheres neuronales Netzwerk mit weniger Schichten und weniger Neuronen verwenden? Warum am Anfang ein größeres, komplizierteres Modell bauen und Teile davon später unterdrücken?

4
Gibt es gute Out-of-the-Box-Sprachmodelle für Python?
Ich erstelle Prototypen für eine Anwendung und benötige ein Sprachmodell, um die Ratlosigkeit einiger generierter Sätze zu berechnen. Gibt es ein geschultes Sprachmodell in Python, das ich problemlos verwenden kann? So etwas Einfaches wie model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

2
Ausfall auf welchen LSTM-Schichten?
Ist es bei Verwendung einer Mehrschicht LSTMmit Dropout ratsam, Dropout auf alle ausgeblendeten Ebenen sowie auf die Ausgabeebenen für dichte Ebenen zu setzen? In Hintons Artikel (der Dropout vorschlug) legte er Dropout nur auf die dichten Schichten, aber das lag daran, dass die verborgenen inneren Schichten faltungsmäßig waren. Natürlich kann …

1
Wie genau funktioniert DropOut mit Faltungsschichten?
Dropout ( Papier , Erklärung ) setzt die Ausgabe einiger Neuronen auf Null. Für ein MLP könnten Sie also die folgende Architektur für den Irisblumendatensatz haben : 4 : 50 (tanh) : dropout (0.5) : 20 (tanh) : 3 (softmax) Es würde so funktionieren: softmax(W3⋅tanh(W2⋅mask(D,tanh(W1⋅input_vector)))softmax(W3⋅tanh⁡(W2⋅mask(D,tanh⁡(W1⋅input_vector)))softmax(W_3 \cdot \tanh(W_2 \cdot \text{mask}(D, \tanh(W_1 …
10 dropout 

2
Gibt es Studien, die Dropout im Vergleich zu anderen Regularisierungen untersuchen?
Gibt es Veröffentlichungen, die Unterschiede in den Regularisierungsmethoden für neuronale Netze zeigen, vorzugsweise in verschiedenen Domänen (oder zumindest in verschiedenen Datensätzen)? Ich frage, weil ich derzeit das Gefühl habe, dass die meisten Leute nur Aussetzer zur Regularisierung in der Bildverarbeitung verwenden. Ich möchte prüfen, ob es einen Grund gibt (nicht), …
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.