Fixiere eine ganze Zahl und ein Alphabet . Definieren Sie als Sammlung aller Automaten mit endlichen Zuständen zu Zuständen mit Startzustand 1. Wir betrachten alle DFAs (nicht nur verbundene, minimale oder nicht entartete). somit ist .n
Betrachten Sie nun zwei Zeichenfolgen und definieren Sie als die Anzahl der Elemente von , die sowohl als auch akzeptieren .x , y ∈ Σ ∗
Frage: Wie komplex ist die Berechnung von ?K ( x , y )
Diese Frage hat Auswirkungen auf das maschinelle Lernen .
Edit: Jetzt, da es eine Fülle von Fragen gibt, ist wohl etwas mehr Präzision in der Formulierung angebracht. Für sei die Sammlung von Automaten, wie oben definiert. Definieren Sie für als die Anzahl der Automaten in , die sowohl als auch akzeptieren . Frage: Kann in der Zeit berechnet werden ?n ≥ 1 D F A ( n ) n 2 n 2 n x , y ∈ { 0 , 1 } * K n ( x , y ) D F A ( n )