Als «rnn» getaggte Fragen

Ein wiederkehrendes neuronales Netzwerk (RNN) ist eine Klasse künstlicher neuronaler Netzwerke, bei denen Verbindungen zwischen Einheiten einen gerichteten Zyklus bilden.





1
Was genau sind Aufmerksamkeitsmechanismen?
In den letzten Jahren wurden in verschiedenen Deep-Learning-Artikeln Aufmerksamkeitsmechanismen eingesetzt. Ilya Sutskever, Forschungsleiter bei Open AI, hat sie begeistert gelobt: https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0 Eugenio Culurciello von der Purdue University hat gefordert, dass RNNs und LSTMs zugunsten rein auf Aufmerksamkeit basierender neuronaler Netze aufgegeben werden sollten: https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0 Dies scheint übertrieben, aber es ist …



4
Unterschied zwischen RNN und LSTM / GRU
Ich versuche, verschiedene RNN-Architekturen (Recurrent Neural Network) zu verstehen, die auf Zeitreihendaten angewendet werden sollen, und bin etwas verwirrt mit den verschiedenen Namen, die häufig bei der Beschreibung von RNNs verwendet werden. Ist die Struktur von Langzeitspeicher (LSTM) und Gated Recurrent Unit (GRU) im Wesentlichen ein RNN mit einer Rückkopplungsschleife?


2
Unterschied zwischen Abtastwerten, Zeitschritten und Merkmalen im neuronalen Netz
Ich gehe den folgenden Blog im neuronalen LSTM-Netzwerk durch: http://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/ Der Autor formt den Eingabevektor X als [Beispiele, Zeitschritte, Merkmale] für unterschiedliche Konfigurationen von LSTMs um. Der Autor schreibt In der Tat sind die Buchstabenfolgen Zeitschritte eines Merkmals und keine Zeitschritte einzelner Merkmale. Wir haben dem Netzwerk mehr Kontext gegeben, …


1
RNNs: Wann BPTT anwenden und / oder Gewichte aktualisieren?
Ich versuche, die Anwendung von RNNs auf hoher Ebene auf die Sequenzmarkierung über (unter anderem) Graves 'Artikel über die Phonemklassifizierung von 2005 zu verstehen . Um das Problem zusammenzufassen: Wir haben ein großes Trainingsset, das aus (Eingabe-) Audiodateien einzelner Sätze und (Ausgabe-) von Experten gekennzeichneten Startzeiten, Stoppzeiten und Beschriftungen für …
15 lstm  rnn 

3
Warum sich in einem RNN zurück durch die Zeit ausbreiten?
In einem wiederkehrenden neuronalen Netzwerk würden Sie normalerweise die Weiterleitung über mehrere Zeitschritte durchführen, das Netzwerk "ausrollen" und dann die Weiterleitung über die Folge von Eingaben zurückführen. Warum sollten Sie nicht einfach die Gewichte nach jedem einzelnen Schritt in der Sequenz aktualisieren? (Das entspricht einer Trunkierungslänge von 1, es gibt …

2
Warum können RNNs mit LSTM-Einheiten auch unter explodierenden Gradienten leiden?
Ich habe Grundkenntnisse über die Funktionsweise von RNNs (und insbesondere von LSTMs). Ich habe eine bildliche Vorstellung von der Architektur einer LSTM-Einheit, dh einer Zelle und einiger Tore, die den Wertefluss regulieren. Anscheinend habe ich jedoch nicht vollständig verstanden, wie LSTM das Problem des "Verschwindens und Explodierens von Gradienten" löst, …

3
RNN für unregelmäßige Zeitintervalle?
RNNs eignen sich bemerkenswert gut zur Erfassung der Zeitabhängigkeit sequentieller Daten. Was passiert jedoch, wenn die Sequenzelemente nicht zeitlich gleich verteilt sind? Beispielsweise erfolgt die erste Eingabe in die LSTM-Zelle am Montag, dann keine Daten von Dienstag bis Donnerstag und schließlich neue Eingaben für jeden Freitag, Samstag, Sonntag. Eine Möglichkeit …

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.