Als «lstm» getaggte Fragen

Ein Long Short Term Memory (LSTM) ist eine neuronale Netzwerkarchitektur, die wiederkehrende NN-Blöcke enthält, die sich über einen beliebigen Zeitraum an einen Wert erinnern können.

4
Wie verhindert LSTM das Problem des Fluchtgradienten?
LSTM wurde speziell erfunden, um das Problem des verschwindenden Gradienten zu vermeiden. Dies soll mit dem Constant Error Carousel (CEC) geschehen, das in der folgenden Abbildung (von Greff et al. ) Der Schleife um die Zelle entspricht . (Quelle: deeplearning4j.org ) Und ich verstehe, dass dieser Teil als eine Art …


1
Der Trainingsverlust steigt und fällt. Was ist los?
Mein Trainingsverlust geht runter und dann wieder rauf. Es ist sehr komisch. Der Kreuzvalidierungsverlust verfolgt den Trainingsverlust. Was ist los? Ich habe zwei gestapelte LSTMS wie folgt (auf Keras): model = Sequential() model.add(LSTM(512, return_sequences=True, input_shape=(len(X[0]), len(nd.char_indices)))) model.add(Dropout(0.2)) model.add(LSTM(512, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(len(nd.categories))) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adadelta') Ich trainiere es für 100 Epochen: …


1
Was genau sind Aufmerksamkeitsmechanismen?
In den letzten Jahren wurden in verschiedenen Deep-Learning-Artikeln Aufmerksamkeitsmechanismen eingesetzt. Ilya Sutskever, Forschungsleiter bei Open AI, hat sie begeistert gelobt: https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0 Eugenio Culurciello von der Purdue University hat gefordert, dass RNNs und LSTMs zugunsten rein auf Aufmerksamkeit basierender neuronaler Netze aufgegeben werden sollten: https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0 Dies scheint übertrieben, aber es ist …

3
Grundlegendes zum input_shape-Parameter in LSTM mit Keras
Ich versuche das in der Keras-Dokumentation beschriebene Beispiel mit dem Namen "Stacked LSTM for Sequence Classification" (siehe Code unten) zu verwenden und kann den input_shapeParameter im Kontext meiner Daten nicht herausfinden . Ich habe als Eingabe eine Matrix von Sequenzen von 25 möglichen ganzen Zahlen in einem aufgefüllten Folge maximaler …
20 lstm  keras  shape  dimensions 


4
Unterschied zwischen RNN und LSTM / GRU
Ich versuche, verschiedene RNN-Architekturen (Recurrent Neural Network) zu verstehen, die auf Zeitreihendaten angewendet werden sollen, und bin etwas verwirrt mit den verschiedenen Namen, die häufig bei der Beschreibung von RNNs verwendet werden. Ist die Struktur von Langzeitspeicher (LSTM) und Gated Recurrent Unit (GRU) im Wesentlichen ein RNN mit einer Rückkopplungsschleife?



2
Unterschied zwischen Abtastwerten, Zeitschritten und Merkmalen im neuronalen Netz
Ich gehe den folgenden Blog im neuronalen LSTM-Netzwerk durch: http://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/ Der Autor formt den Eingabevektor X als [Beispiele, Zeitschritte, Merkmale] für unterschiedliche Konfigurationen von LSTMs um. Der Autor schreibt In der Tat sind die Buchstabenfolgen Zeitschritte eines Merkmals und keine Zeitschritte einzelner Merkmale. Wir haben dem Netzwerk mehr Kontext gegeben, …


1
RNNs: Wann BPTT anwenden und / oder Gewichte aktualisieren?
Ich versuche, die Anwendung von RNNs auf hoher Ebene auf die Sequenzmarkierung über (unter anderem) Graves 'Artikel über die Phonemklassifizierung von 2005 zu verstehen . Um das Problem zusammenzufassen: Wir haben ein großes Trainingsset, das aus (Eingabe-) Audiodateien einzelner Sätze und (Ausgabe-) von Experten gekennzeichneten Startzeiten, Stoppzeiten und Beschriftungen für …
15 lstm  rnn 

1
Verhinderung einer Überanpassung von LSTM bei kleinen Datenmengen
Ich modelliere 15000 Tweets für die Stimmungsvorhersage unter Verwendung eines einschichtigen LSTM mit 128 verborgenen Einheiten unter Verwendung einer word2vec-ähnlichen Darstellung mit 80 Dimensionen. Nach 1 Epoche erhalte ich eine Abstiegsgenauigkeit (38% bei Zufall = 20%). Mehr Training führt dazu, dass die Validierungsgenauigkeit abnimmt, wenn die Trainingsgenauigkeit zu steigen beginnt …


Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.