Faltungsneurale Netze sind eine Art neuronales Netz, in dem nur Teilmengen möglicher Verbindungen zwischen Schichten existieren, um überlappende Regionen zu erzeugen. Sie werden häufig für visuelle Aufgaben verwendet.
Ich habe über den Adam-Optimierer für Deep Learning gelesen und bin in dem neuen Buch Deep Learning von Begnio, Goodfellow und Courtville auf folgenden Satz gestoßen: Adam schließt Vorspannungskorrekturen an den Schätzungen sowohl der Momente erster Ordnung (dem Impulsausdruck) als auch der (nicht zentrierten) Momente zweiter Ordnung ein, um ihre …
In einigen Tutorials wurde festgestellt, dass die "Xavier" -Gewichtsinitialisierung (Artikel: Verständnis der Schwierigkeit, tiefe Feedforward-Neuronale Netze zu trainieren ) ein effizienter Weg ist, um die Gewichte von Neuronalen Netzen zu initialisieren. Für vollständig verbundene Ebenen gab es in diesen Tutorials eine Faustregel: Var(W)=2nin+nout,simpler alternative:Var(W)=1ninVar(W)=2nin+nout,simpler alternative:Var(W)=1ninVar(W) = \frac{2}{n_{in} + n_{out}}, \quad …
Der universelle Approximationssatz ist ein ziemlich bekanntes Ergebnis für neuronale Netze, das im Grunde besagt, dass unter bestimmten Annahmen eine Funktion durch ein neuronales Netz mit beliebiger Genauigkeit einheitlich approximiert werden kann. Gibt es ein analoges Ergebnis, das für Faltungs-Neuronale Netze gilt?
Ist es möglich, negative Gewichte (nach genügend Epochen) für tiefe Faltungs-Neuronale Netze zu haben, wenn wir ReLU für alle Aktivierungsschichten verwenden?
Geschlossen. Diese Frage ist nicht zum Thema . Derzeit werden keine Antworten akzeptiert. Möchten Sie diese Frage verbessern? Aktualisieren Sie die Frage so dass es beim Thema für Kreuz Validated. Geschlossen vor 9 Monaten . Ich weiß, dass es viele Bibliotheken für maschinelles Lernen und tiefes Lernen gibt, wie Kaffee, …
Hier ist ein Keras-Codebeispiel, das es verwendet: from keras.constraints import max_norm model.add(Convolution2D(32, 3, 3, input_shape=(3, 32, 32), border_mode='same', activation='relu', kernel_constraint=max_norm(3)))
Sowohl die Begriffe "Upsampling" als auch "Transponierungsfaltung" werden verwendet, wenn Sie "Entfaltung" durchführen (<- kein guter Begriff, aber lassen Sie mich ihn hier verwenden). Ursprünglich dachte ich, dass sie dasselbe bedeuten, aber es scheint mir, dass sie sich unterscheiden, nachdem ich diese Artikel gelesen habe. kann jemand bitte klarstellen? Transponieren …
Ich las die Arbeit Deep Residual Learning for Image Recognition und hatte Schwierigkeiten, mit 100% iger Sicherheit zu verstehen, was ein Restblock rechnerisch bedeutet. Beim Lesen ihrer Zeitung haben sie Abbildung 2: Dies zeigt, was ein Restblock sein soll. Ist die Berechnung eines Restblocks einfach dieselbe wie: y =σ( W.2σ( …
Lesen Mit Faltungen tiefer gehen Ich stieß auf eine DepthConcat- Ebene, einen Baustein der vorgeschlagenen Inception- Module , der die Ausgabe mehrerer Tensoren unterschiedlicher Größe kombiniert. Die Autoren nennen dies "Filterverkettung". Es scheint eine Implementierung für Torch zu geben , aber ich verstehe nicht wirklich, was es tut. Kann jemand …
Die Topologie des Google Inception-Modells finden Sie hier: Google Inception Netowrk Mir ist aufgefallen, dass dieses Modell 3 Softmax-Schichten enthält (Nr. 154, Nr. 152, Nr. 145), von denen 2 eine Art frühes Entkommen dieses Modells darstellen. Soweit ich weiß, ist die Softmax-Ebene für die endgültige Ausgabe vorgesehen. Warum gibt es …
Ich möchte Deep Learning verwenden, um eine binäre Erkennung von Gesichtern / Nicht-Gesichtern zu trainieren. Welchen Verlust soll ich verwenden ? Ich denke, es ist SigmoidCrossEntropyLoss oder Hinge-loss . Stimmt das, aber ich frage mich auch, ob ich Softmax verwenden soll, aber nur mit zwei Klassen?
Nach meinem Verständnis bestehen CNNs aus zwei Teilen. Der erste Teil (Conv / Pool-Schichten), der die Merkmalsextraktion durchführt, und der zweite Teil (fc-Schichten), der die Klassifizierung aus den Merkmalen vornimmt. Da vollständig verbundene neuronale Netze nicht die besten Klassifizierer sind (dh sie werden die meiste Zeit von SVMs und RFs …
Ich habe das Batch-Normalisierungspapier [1] gelesen und es hatte einen Abschnitt, in dem ein Beispiel behandelt wird, um zu zeigen, warum die Normalisierung sorgfältig durchgeführt werden muss. Ich kann ehrlich gesagt nicht verstehen, wie das Beispiel funktioniert, und ich bin wirklich sehr neugierig zu verstehen, dass sie so viel Papier …
Ich habe mir die CS231N-Vorlesungen von Stanford angesehen und versuche, mich mit einigen Problemen in CNN-Architekturen zu befassen. Ich versuche zu verstehen, ob es einige allgemeine Richtlinien für die Auswahl der Faltungsfiltergröße und Dinge wie Schritte gibt oder ob dies eher eine Kunst als eine Wissenschaft ist. Ich verstehe, dass …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.