Sie haben Recht, dass die Ausgabe von R normalerweise nur wichtige Informationen enthält und weitere Informationen separat berechnet werden müssen.
N <- 100 # generate some data
X1 <- rnorm(N, 175, 7)
X2 <- rnorm(N, 30, 8)
X3 <- abs(rnorm(N, 60, 30))
Y <- 0.5*X1 - 0.3*X2 - 0.4*X3 + 10 + rnorm(N, 0, 12)
# dichotomize Y and do logistic regression
Yfac <- cut(Y, breaks=c(-Inf, median(Y), Inf), labels=c("lo", "hi"))
glmFit <- glm(Yfac ~ X1 + X2 + X3, family=binomial(link="logit"))
coefficients()
gibt Ihnen die geschätzten Regressionsparameter . Es ist jedoch einfacher, zu interpretieren (mit Ausnahme des Intercept).bjexp(bj)
> exp(coefficients(glmFit))
(Intercept) X1 X2 X3
5.811655e-06 1.098665e+00 9.511785e-01 9.528930e-01
Um die Odds Ratio zu erhalten, benötigen wir die Klassifikationskreuztabelle des ursprünglichen dichotomen DV und die vorhergesagte Klassifikation gemäß einer Wahrscheinlichkeitsschwelle, die zuerst ausgewählt werden muss. Sie können die Funktion auch ClassLog()
im Paket sehen QuantPsyc
(wie in einer verwandten Frage erwähnt ).
# predicted probabilities or: predict(glmFit, type="response")
> Yhat <- fitted(glmFit)
> thresh <- 0.5 # threshold for dichotomizing according to predicted probability
> YhatFac <- cut(Yhat, breaks=c(-Inf, thresh, Inf), labels=c("lo", "hi"))
> cTab <- table(Yfac, YhatFac) # contingency table
> addmargins(cTab) # marginal sums
YhatFac
Yfac lo hi Sum
lo 41 9 50
hi 14 36 50
Sum 55 45 100
> sum(diag(cTab)) / sum(cTab) # percentage correct for training data
[1] 0.77
Für das Odds Ratio können Sie entweder das Paket verwenden vcd
oder die Berechnung manuell durchführen.
> library(vcd) # for oddsratio()
> (OR <- oddsratio(cTab, log=FALSE)) # odds ratio
[1] 11.71429
> (cTab[1, 1] / cTab[1, 2]) / (cTab[2, 1] / cTab[2, 2])
[1] 11.71429
> summary(glmFit) # test for regression parameters ...
# test for the full model against the 0-model
> glm0 <- glm(Yfac ~ 1, family=binomial(link="logit"))
> anova(glm0, glmFit, test="Chisq")
Analysis of Deviance Table
Model 1: Yfac ~ 1
Model 2: Yfac ~ X1 + X2 + X3
Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 99 138.63
2 96 110.58 3 28.045 3.554e-06 ***
cbind( exp(coef(x)), exp(summary(x)$coefficients[,1] - 1.96*summary(x)$coefficients[,2]), exp(summary(x)$coefficients[,1] + 1.96*summary(x)$coefficients[,2]) )
. Es gibt auch die Delta-Methode: ats.ucla.edu/stat/r/faq/deltamethod.htm