Ich verwende die Arima-Methode des Statistikpakets von R mit meiner Zeitreihe von 17376 Elementen. Mein Ziel ist es, den Wert des AIC-Kriteriums zu erhalten. Ich habe in meinem ersten Test Folgendes beobachtet:
ts <- arima(serie[,1], order = c(2,1,1), seasonal = list(order=c(2,0,1),period = 24),
method = "CSS", optim.method = "BFGS",)
> ts$coef
ar1 ar2 ma1 sar1 sar2 sma1
0.8883730 -0.0906352 -0.9697230 1.2047580 -0.2154847 -0.7744656
> ts$aic
[1] NA
Wie Sie sehen können, ist AIC nicht definiert. Über AIC sagte "Hilfe" in R, dass es nur mit "ML" verwendet werden könne. Es passiert jedoch:
> ts <- arima(serie[,1], order = c(2,1,1), seasonal = list(order=c(2,0,1),period = 24),
method = "ML", optim.method = "BFGS",)
Error en optim(init[mask], armafn, method = optim.method, hessian = TRUE, :
non-finite finite-difference value [1]
Plus: warning messages lost
In log(s2) : There have been NaNs
Ich verstehe nicht, was passiert. Außerdem möchte ich mehr über den Parameter "Anpassungsmethode" erfahren.
optim.control
Argument) hätte gute Chancen, dieses Problem zu vermeiden. Ich habe dies nicht getestet, da Sie kein reproduzierbares Beispiel für die Schwierigkeit liefern.