Kann mir jemand den Unterschied zwischen der Verwendung aov()
und lme()
Analyse von Längsschnittdaten und der Interpretation der Ergebnisse dieser beiden Methoden erklären?
Unten analysiere ich den gleichen Datensatz mit aov()
und lme()
und erhalte 2 unterschiedliche Ergebnisse. Mit habe aov()
ich ein signifikantes Ergebnis in der Zeit durch die Interaktion mit der Behandlung erhalten, aber wenn ich ein lineares gemischtes Modell anpasse, ist die Zeit durch die Interaktion mit der Behandlung unerheblich.
> UOP.kg.aov <- aov(UOP.kg~time*treat+Error(id), raw3.42)
> summary(UOP.kg.aov)
Error: id
Df Sum Sq Mean Sq F value Pr(>F)
treat 1 0.142 0.1421 0.0377 0.8471
Residuals 39 147.129 3.7725
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
time 1 194.087 194.087 534.3542 < 2e-16 ***
time:treat 1 2.077 2.077 5.7197 0.01792 *
Residuals 162 58.841 0.363
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> UOP.kg.lme <- lme(UOP.kg~time*treat, random=list(id=pdDiag(~time)),
na.action=na.omit, raw3.42)
> summary(UOP.kg.lme)
Linear mixed-effects model fit by REML
Data: raw3.42
AIC BIC logLik
225.7806 248.9037 -105.8903
Random effects:
Formula: ~time | id
Structure: Diagonal
(Intercept) time Residual
StdDev: 0.6817425 0.5121545 0.1780466
Fixed effects: UOP.kg ~ time + treat + time:treat
Value Std.Error DF t-value p-value
(Intercept) 0.5901420 0.1480515 162 3.986059 0.0001
time 0.8623864 0.1104533 162 7.807701 0.0000
treat -0.2144487 0.2174843 39 -0.986042 0.3302
time:treat 0.1979578 0.1622534 162 1.220053 0.2242
Correlation:
(Intr) time treat
time -0.023
treat -0.681 0.016
time:treat 0.016 -0.681 -0.023
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.198315285 -0.384858426 0.002705899 0.404637305 2.049705655
Number of Observations: 205
Number of Groups: 41