Es ist in der Tat etwas. Um dies herauszufinden, müssen wir untersuchen, was wir über die Korrelation selbst wissen.
Die Korrelationsmatrix eines Vektors bewertet Zufallsvariable X=(X1,X2,…,Xp) ist die Varianz-Kovarianz - Matrix, oder einfach als "Varianz" , der standardisierten Version von X . Das heißt, jedes Xi wird durch seine neu zentrierte, neu skalierte Version ersetzt.
Die Kovarianz von und X j ist die Erwartung an das Produkt ihrer zentrierten Versionen. Das heißt , wir schreiben X ' i = X i - E [ X i ] und X ' j = X j - E [ X j ]XiXjX′i=Xi−E[Xi]X′j=Xj−E[Xj]
Cov(Xi,Xj)=E[X′iX′j].
Die Varianz von , die ich Var ( X ) schreiben werde , ist keine einzelne Zahl. Es ist das Array von Werten Var ( X ) i j = Cov ( X i , X j ) .XVar(X)
Var(X)ij=Cov(Xi,Xj).
Die Kovarianz für die beabsichtigte Verallgemeinerung wird als Tensor betrachtet . Das heißt , es ist eine ganze Sammlung von Mengen , indiziert durch i und j im Bereich von 1 bis p , deren Werte in einer besonders einfachen vorhersehbarer Weise verändern , wenn X eine lineare Transformation unterzogen wird . Insbesondere sei Y = ( Y 1 , Y 2 , ... , Y q ) eine andere vektorielle Zufallsvariable, die durch definiert istvijij1pXY=(Y1,Y2,…,Yq)
Yi=∑j=1pajiXj.
Die Konstanten (iundjsindIndizes-jist keine Potenz) bilden einq×p-ArrayA=(aajiijjq×p,j=1,...,pundi=1,...,q. Die Linearität der Erwartung impliziertA=(aji)j=1,…,pi=1,…,q
Var(Y)ij=∑akialjVar(X)kl.
In der Matrixnotation
Var(Y)=AVar(X)A′.
Alle Komponenten von sind aufgrund der Polarisationsidentität tatsächlich univariate VarianzenVar(X)
4Cov(Xi,Xj)=Var(Xi+Xj)−Var(Xi−Xj).
Dies sagt uns, dass Sie, wenn Sie Varianzen univariater Zufallsvariablen verstehen, bereits Kovarianzen bivariater Variablen verstehen: Sie sind "nur" lineare Kombinationen von Varianzen.
Der Ausdruck in der Frage ist vollkommen analog: Die Variablen wurden wie in ( 1 ) standardisiert . Wir können verstehen, was es darstellt, wenn wir überlegen, was es für eine Variable bedeutet, ob standardisiert oder nicht. Wir würden jedes X i durch seine zentrierte Version wie in ( 2 ) ersetzen und Mengen mit drei Indizes bilden,Xi(1)Xi(2)
μ3(X)ijk=E[X′iX′jX′k].
These are the central (multivariate) moments of degree 3. As in (4), they form a tensor: when Y=AX, then
μ3(Y)ijk=∑l,m,naliamjankμ3(X)lmn.
The indexes in this triple sum range over all combinations of integers from 1 through p.
The analog of the Polarization Identity is
24μ3(X)ijk=μ3(Xi+Xj+Xk)−μ3(Xi−Xj+Xk)−μ3(Xi+Xj−Xk)+μ3(Xi−Xj−Xk).
On the right hand side, μ3 refers to the (univariate) central third moment: the expected value of the cube of the centered variable. When the variables are standardized, this moment is usually called the skewness. Accordingly, we may think of μ3(X) as being the multivariate skewness of X. It is a tensor of rank three (that is, with three indices) whose values are linear combinations of the skewnesses of various sums and differences of the Xi. If we were to seek interpretations, then, we would think of these components as measuring in p dimensions whatever the skewness is measuring in one dimension. In many cases,
The first moments measure the location of a distribution;
The second moments (the variance-covariance matrix) measure its spread;
The standardized second moments (the correlations) indicate how the spread varies in p-dimensional space; and
The standardized third and fourth moments are taken to measure the shape of a distribution relative to its spread.
To elaborate on what a multidimensional "shape" might mean, observed that we can understand PCA as a mechanism to reduce any multivariate distribution to a standard version located at the origin and equal spreads in all directions. After PCA is performed, then, μ3 would provide the simplest indicators of the multidimensional shape of the distribution. These ideas apply equally well to data as to random variables, because data can always be analyzed in terms of their empirical distribution.
Reference
Alan Stuart & J. Keith Ord, Kendall's Advanced Theory of Statistics Fifth Edition, Volume 1: Distribution Theory; Chapter 3, Moments and Cumulants. Oxford University Press (1987).
Appendix: Proof of the Polarization Identity
Let x1,…,xn be algebraic variables. There are 2n ways to add and subtract all n of them. When we raise each of these sums-and-differences to the nth power, pick a suitable sign for each of those results, and add them up, we will get a multiple of x1x2⋯xn.
More formally, let S={1,−1}n be the set of all n-tuples of ±1, so that any element s∈S is a vector s=(s1,s2,…,sn) whose coefficients are all ±1. The claim is
2nn!x1x2⋯xn=∑s∈Ss1s2⋯sn(s1x1+s2x2+⋯+snxn)n.(1)
Indeed, the Multinomial Theorem states that the coefficient of the monomial xi11xi22⋯xinn (where the ij are nonnegative integers summing to n) in the expansion of any term on the right hand side is
(ni1,i2,…,in)si11si22⋯sinn.
In the sum (1), the coefficients involving xi11 appear in pairs where one of each pair involves the case s1=1, with coefficient proportional to s1 times si11, equal to 1, and the other of each pair involves the case s1=−1, with coefficient proportional to −1 times (−1)i1, equal to (−1)i1+1. They cancel in the sum whenever i1+1 is odd. The same argument applies to i2,…,in. Consequently, the only monomials that occur with nonzero coefficients must have odd powers of all the xi. The only such monomial is x1x2⋯xn. It appears with coefficient (n1,1,…,1)=n! in all 2n terms of the sum. Consequently its coefficient is 2nn!, QED.
We need take only half of each pair associated with x1: that is, we can restrict the right hand side of (1) to the terms with s1=1 and halve the coefficient on the left hand side to 2n−1n! . That gives precisely the two versions of the Polarization Identity quoted in this answer for the cases n=2 and n=3: 22−12!=4 and 23−13!=24.
Of course the Polarization Identity for algebraic variables immediately implies it for random variables: let each xi be a random variable Xi. Take expectations of both sides. The result follows by linearity of expectation.