Ich habe einen täglichen Wetterdatensatz, der wenig überraschend einen sehr starken saisonalen Effekt hat.
Ich habe ein ARIMA-Modell mit der Funktion auto.arima aus dem Prognosepaket an diesen Datensatz angepasst. Zu meiner Überraschung wendet die Funktion keine saisonalen Operationen an - saisonale Differenzierung, saisonale ar- oder ma-Komponenten. Hier ist das Modell, das es geschätzt hat:
library(forecast)
data<-ts(data,frequency=365)
auto.arima(Berlin)
Series: data
ARIMA(3,0,1) with non-zero mean
Coefficients:
ar1 ar2 ar3 ma1 intercept
1.7722 -0.9166 0.1412 -0.8487 283.0378
s.e. 0.0260 0.0326 0.0177 0.0214 1.7990
sigma^2 estimated as 5.56: log likelihood=-8313.74
AIC=16639.49 AICc=16639.51 BIC=16676.7
Und auch die Prognosen mit diesem Modell sind nicht wirklich zufriedenstellend. Hier ist die Darstellung der Prognose:
Kann mir jemand einen Hinweis geben, was hier falsch ist?