Mehrere logistische Regressionen vs. multinomiale Regression


10

Ist es möglich, mehrere binäre logistische Regressionen durchzuführen, anstatt eine multinomiale Regression durchzuführen? Aus dieser Frage: Multinomiale logistische Regression im Vergleich zur binären logistischen Regression zwischen Eins und Rest Ich sehe, dass die multinomiale Regression möglicherweise niedrigere Standardfehler aufweist.

Das Paket, das ich verwenden möchte, wurde jedoch nicht auf multinomiale Regression verallgemeinert ( ncvreg: http://cran.r-project.org/web/packages/ncvreg/ncvreg.pdf ), und ich habe mich gefragt, ob ich es einfach tun könnte stattdessen mehrere binäre logistische Regressionen.

Antworten:


8

Mit einem multinomialen Logit-Modell legen Sie die Einschränkung fest, dass sich alle vorhergesagten Wahrscheinlichkeiten zu 1 addieren. Wenn Sie ein separates binäres Logit-Modell verwenden, können Sie diese Einschränkung nicht mehr auferlegen, sie werden schließlich in separaten Modellen geschätzt. Das wäre also der Hauptunterschied zwischen diesen beiden Modellen.

Wie Sie im folgenden Beispiel sehen können (in Stata, da dies das Programm ist, das ich am besten kenne), sind die Modelle in der Regel ähnlich, aber nicht gleich. Ich würde besonders vorsichtig sein, wenn ich vorhergesagte Wahrscheinlichkeiten extrapoliere.

// some data preparation
. sysuse nlsw88, clear                                                               
(NLSW, 1988 extract)                                                                 

.                                                                                    
. gen byte occat = cond(occupation < 3                 , 1,      ///                 
>                  cond(inlist(occupation, 5, 6, 8, 13), 2, 3))  ///                 
>                  if !missing(occupation)                                           
(9 missing values generated)                                                         

. label variable occat "occupation in categories"                                    

. label define occat 1 "high"   ///                                                  
>                    2 "middle" ///                                                  
>                    3 "low"                                                         

. label value occat occat                                                            

.                                                                                    
. gen byte middle = (occat == 2) if occat !=1 & !missing(occat)                      
(590 missing values generated)                                                       

. gen byte high   = (occat == 1) if occat !=2 & !missing(occat)                      
(781 missing values generated)                                                       


// a multinomial logit model
. mlogit occat i.race i.collgrad , base(3) nolog                                     

Multinomial logistic regression                   Number of obs   =       2237       
                                                  LR chi2(6)      =     218.82       
                                                  Prob > chi2     =     0.0000       
Log likelihood = -2315.9312                       Pseudo R2       =     0.0451       

-------------------------------------------------------------------------------      
        occat |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]      
--------------+----------------------------------------------------------------      
high          |                                                                      
         race |                                                                      
       black  |  -.4005801   .1421777    -2.82   0.005    -.6792433    -.121917      
       other  |   .4588831   .4962591     0.92   0.355    -.5137668    1.431533      
              |                                                                      
     collgrad |                                                                      
college grad  |   1.495019   .1341625    11.14   0.000     1.232065    1.757972      
        _cons |  -.7010308   .0705042    -9.94   0.000    -.8392165   -.5628451      
--------------+----------------------------------------------------------------      
middle        |                                                                      
         race |                                                                      
       black  |   .6728568   .1106792     6.08   0.000     .4559296     .889784      
       other  |   .2678372    .509735     0.53   0.599    -.7312251    1.266899      
              |                                                                      
     collgrad |                                                                      
college grad  |    .976244   .1334458     7.32   0.000      .714695    1.237793      
        _cons |   -.517313   .0662238    -7.81   0.000    -.6471092   -.3875168      
--------------+----------------------------------------------------------------      
low           |  (base outcome)                                                      
-------------------------------------------------------------------------------      

// separate logits:
. logit high   i.race i.collgrad , nolog                                             

Logistic regression                               Number of obs   =       1465       
                                                  LR chi2(3)      =     154.21       
                                                  Prob > chi2     =     0.0000       
Log likelihood = -906.79453                       Pseudo R2       =     0.0784       

-------------------------------------------------------------------------------      
         high |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]      
--------------+----------------------------------------------------------------      
         race |                                                                      
       black  |  -.5309439   .1463507    -3.63   0.000     -.817786   -.2441017      
       other  |   .2670161   .5116686     0.52   0.602     -.735836    1.269868      
              |                                                                      
     collgrad |                                                                      
college grad  |   1.525834   .1347081    11.33   0.000     1.261811    1.789857      
        _cons |  -.6808361   .0694323    -9.81   0.000     -.816921   -.5447512      
-------------------------------------------------------------------------------      

. logit middle i.race i.collgrad , nolog                                             

Logistic regression                               Number of obs   =       1656       
                                                  LR chi2(3)      =      90.13       
                                                  Prob > chi2     =     0.0000       
Log likelihood = -1098.9988                       Pseudo R2       =     0.0394       

-------------------------------------------------------------------------------      
       middle |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]      
--------------+----------------------------------------------------------------      
         race |                                                                      
       black  |   .6942945   .1114418     6.23   0.000     .4758725    .9127164      
       other  |   .3492788   .5125802     0.68   0.496    -.6553598    1.353918      
              |                                                                      
     collgrad |                                                                      
college grad  |   .9979952   .1341664     7.44   0.000     .7350339    1.260957      
        _cons |  -.5287625   .0669093    -7.90   0.000    -.6599023   -.3976226      
-------------------------------------------------------------------------------      

2

Sie können einen "Eins gegen Alle" -Ansatz ausprobieren, bei dem Sie so viele binäre Klassifikatoren trainieren, wie Sie haben. Für jeden Klassifizierer sind die positiven Stichproben diejenigen, die zu dieser Klasse gehören, und die negativen die übrigen, so dass jeder logistische Klassifizierer Ihnen die bedingte Wahrscheinlichkeit gibt, dass eine konkrete Stichprobe zu dieser Klasse gehört.

Bei der Klassifizierung weisen Sie nun jede neue Stichprobe der Klasse zu, für die der entsprechende Klassifizierer die höchste Wahrscheinlichkeit bietet.

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.