Großer Unterschied zwischen einem T-Test und einem F-Test in einem gemischten Modell (Anova vs. Zusammenfassung in lmerTest)


7

Während ich jemand anderem bei seinen Analysen half, stieß ich auf eine Frage bezüglich des Unterschieds zwischen t-Tests und F-Tests für lineare gemischte Modelle in lme4 für R, wie von lmerTest bereitgestellt. Ich bin mir der Probleme bei der Berechnung jeglicher Art von p-Werten für lineare gemischte Modelle bewusst (wie ich verstehe, hauptsächlich aufgrund der Tatsache, dass die Definition der Freiheitsgrade problematisch ist) sowie der Probleme bei der Interpretation der Haupteffekte in das Vorhandensein signifikanter Wechselwirkungen (basierend auf dem Marginalitätsprinzip).

Kurz gesagt stammen die Daten aus einem Experiment mit zwei Bedingungen (Kongruenz WAHR / FALSCH), gemessen an sechs Sensorsätzen, die als Kombination zweier Faktoren beschrieben werden können: Anteriorität (anterior / posterior) und Lateralität (links / zentral / rechts) .

Wie aus der nachstehenden zusammenfassenden Ausgabe ersichtlich ist, zeigen die t-Tests keinen signifikanten Kongruenzeffekt (p = 0,12), während die Anova-Ausgabe einen sehr signifikanten Kongruenzeffekt zeigt (p = 2,8e-10). Da die Kongruenz nur zwei Ebenen hat, kann dies nicht das Ergebnis des F-Tests sein, der einen Omnibus-Test über mehrere Ebenen des festen Faktors durchführt. Ich bin mir daher nicht sicher, was das sehr signifikante Ergebnis in der Anova-Ausgabe verursacht. Liegt dies an der Tatsache, dass es starke Wechselwirkungen mit Kongruenz gibt, die natürlich von der Einbeziehung des Haupteffekts in die Modellparametrisierung abhängen?

Ich habe auf CrossValidated nach einer früheren Antwort auf diese Frage gesucht, konnte jedoch nur die erste Antwort auf diese Frage finden . Wenn dies jedoch eine echte Antwort liefert, ist dies in der Mathematik impliziert, und ich suche nach einer konzeptionellen Antwort, die ich der Person erklären kann, der ich helfen möchte.

> final.mod<-lmer(uV~1+factor(congruity)*factor(laterality)*factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(final.mod)
Linear mixed model fit by REML 

t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) * factor(laterality) * factor(anteriority) +      (1 | sent.id) + (1 | Subject)
   Data: selected.data
REML criterion at convergence: 348903.5
Scaled residuals: 
Min      1Q  Median      3Q     Max 
-7.0440 -0.6002  0.0069  0.6038 11.3912 
Random effects:
 Groups   Name        Variance Std.Dev.
 sent.id  (Intercept)   1.773   1.332  
 Subject  (Intercept)   2.548   1.596  
 Residual             111.396  10.554  
Number of obs: 46176, groups:  sent.id, 41; Subject, 30
Fixed effects:
                                                                     Estimate Std. Error         df t value Pr(>|t|)  
(Intercept)                                                                 4.768e-03  3.973e-01  7.900e+01   0.012   0.9905  
factor(congruity)TRUE                                                       3.758e-01  2.410e-01  4.611e+04   1.559   0.1189  
factor(laterality)left                                                      7.154e-02  2.430e-01  4.610e+04   0.294   0.7685  
factor(laterality)right                                                    -2.003e-01  2.430e-01  4.610e+04  -0.824   0.4098  
factor(anteriority)posterior                                               -4.203e-02  2.430e-01  4.610e+04  -0.173   0.8627
factor(congruity)TRUE:factor(laterality)left                               -1.013e-01  3.404e-01  4.610e+04  -0.298   0.7660
factor(congruity)TRUE:factor(laterality)right                               7.233e-02  3.404e-01  4.610e+04   0.213   0.8317
factor(congruity)TRUE:factor(anteriority)posterior                          6.162e-01  3.404e-01  4.610e+04   1.810   0.0702 .
factor(laterality)left:factor(anteriority)posterior                         2.568e-01  3.437e-01  4.610e+04   0.747   0.4549
factor(laterality)right:factor(anteriority)posterior                        1.763e-01  3.437e-01  4.610e+04   0.513   0.6080
factor(congruity)TRUE:factor(laterality)left:factor(anteriority)posterior  -5.162e-02  4.813e-01  4.610e+04  -0.107   0.9146
factor(congruity)TRUE:factor(laterality)right:factor(anteriority)posterior -2.420e-01  4.813e-01  4.610e+04  -0.503   0.6152  
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
                          (Intr) fc()TRUE fctr(ltrlty)l fctr(ltrlty)r fctr(n) fctr(cngrty)TRUE:fctr(ltrlty)l fctr(cngrty)TRUE:fctr(ltrlty)r
fctr(c)TRUE                       -0.310
fctr(ltrlty)l                     -0.306  0.504
fctr(ltrlty)r                     -0.306  0.504    0.500
fctr(ntrrt)                       -0.306  0.504    0.500         0.500
fctr(cngrty)TRUE:fctr(ltrlty)l     0.218 -0.706   -0.714        -0.357        -0.357
fctr(cngrty)TRUE:fctr(ltrlty)r     0.218 -0.706   -0.357        -0.714        -0.357   0.500
fctr(cngrty)TRUE:fctr(n)           0.218 -0.706   -0.357        -0.357        -0.714   0.500                          0.500
fctr(ltrlty)l:()                   0.216 -0.357   -0.707        -0.354        -0.707   0.505                          0.252
fctr(ltrlty)r:()                   0.216 -0.357   -0.354        -0.707        -0.707   0.252                          0.505
fctr(cngrty)TRUE:fctr(ltrlty)l:() -0.154  0.499    0.505         0.252         0.505  -0.707                         -0.354
fctr(cngrty)TRUE:fctr(ltrlty)r:() -0.154  0.499    0.252         0.505         0.505  -0.354                         -0.707                        
                          fctr(cngrty)TRUE:fctr(n) fctr(ltrlty)l:() fctr(ltrlty)r:() fctr(cngrty)TRUE:fctr(ltrlty)l:()
fctr(c)TRUE
fctr(ltrlty)l
fctr(ltrlty)r
fctr(ntrrt)
fctr(cngrty)TRUE:fctr(ltrlty)l
fctr(cngrty)TRUE:fctr(ltrlty)r
fctr(cngrty)TRUE:fctr(n)
fctr(ltrlty)l:()                   0.505
fctr(ltrlty)r:()                   0.505                    0.500
fctr(cngrty)TRUE:fctr(ltrlty)l:() -0.707                   -0.714           -0.357                                            
fctr(cngrty)TRUE:fctr(ltrlty)r:() -0.707                   -0.357           -0.714            0.500                           
> anova(final.mod)
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                                                 Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
factor(congruity)                                        4439.1  4439.1     1 46142  39.850 2.768e-10 ***
factor(laterality)                                        572.9   286.5     2 46095   2.572  0.076430 .  
factor(anteriority)                                      1508.1  1508.1     1 46095  13.538  0.000234 ***
factor(congruity):factor(laterality)                       31.6    15.8     2 46095   0.142  0.867581    
factor(congruity):factor(anteriority)                     775.1   775.1     1 46095   6.958  0.008349 ** 
factor(laterality):factor(anteriority)                    111.9    56.0     2 46095   0.502  0.605126  
factor(congruity):factor(laterality):factor(anteriority)   31.2    15.6     2 46095   0.140  0.869183    
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Als Antwort auf die Frage von @ Aurelie:

> congruity.mod<-lmer(uV~1+factor(congruity)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(congruity.mod)
Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) + (1 | sent.id) + (1 | Subject)
   Data: selected.data
REML criterion at convergence: 494077.2
Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-10.1673  -0.5790  -0.0097   0.5818  12.6088 

Random effects:
 Groups   Name        Variance Std.Dev.
 sent.id  (Intercept)   4.568   2.137  
 Subject  (Intercept)   6.132   2.476  
 Residual             178.137  13.347  
Number of obs: 61568, groups:  sent.id, 41; Subject, 30

Fixed effects:
                         Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                0.6055     0.5671    57.0000   1.068     0.29    
factor(congruity)FALSE    -0.7105     0.1084 61535.0000  -6.558 5.51e-11 ***
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr)
fctr()FALSE -0.093
> anova(congruity.mod)
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                  Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
factor(congruity) 7660.5  7660.5     1 61535  43.004 5.507e-11 ***
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1
> laterality.mod<-lmer(uV~1+factor(laterality)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(laterality.mod)
Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(laterality) + (1 | sent.id) + (1 | Subject)
   Data: selected.data

REML criterion at convergence: 372848.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-9.7033 -0.5981 -0.0076  0.6006 12.2265 

Random effects:
 Groups   Name        Variance Std.Dev.
 sent.id  (Intercept)   5.568   2.360  
 Subject  (Intercept)   6.777   2.603  
 Residual             186.966  13.674  
Number of obs: 46176, groups:  sent.id, 41; Subject, 30

Fixed effects:
                          Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                 0.8128     0.6115    61.0000   1.329  0.18877    
factor(laterality)left     -0.4260     0.1559 46105.0000  -2.733  0.00628 ** 
factor(laterality)right    -0.6709     0.1559 46105.0000  -4.304 1.68e-05 ***
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
              (Intr) fctr(ltrlty)l
fctr(ltrlty)l -0.127              
fctr(ltrlty)r -0.127  0.500       
> anova(laterality.mod)
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                   Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
factor(laterality) 3548.2  1774.1     2 46105  9.4889 7.584e-05 ***
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1
> anteriority.mod<-lmer(uV~1+factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(anteriority.mod)
Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(anteriority) + (1 | sent.id) + (1 | Subject)
   Data: selected.data

REML criterion at convergence: 372738.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-9.6668 -0.5986 -0.0032  0.6017 12.2711 

Random effects:
 Groups   Name        Variance Std.Dev.
 sent.id  (Intercept)   5.569   2.360  
 Subject  (Intercept)   6.777   2.603  
 Residual             186.525  13.657  
Number of obs: 46176, groups:  sent.id, 41; Subject, 30

Fixed effects:
                           Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                     -0.2693     0.6081    59.0000  -0.443     0.66    
factor(anteriority)posterior     1.4328     0.1271 46105.0000  11.272   <2e-16 ***
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr)
fctr(ntrrt) -0.105
> anova(anteriority.mod)
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                    Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
factor(anteriority)  23700   23700     1 46106  127.06 < 2.2e-16 ***
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Update: Nach dem Update der Kontraste basierend auf @ Henriks Antwort:

> options(contrasts=c("contr.sum","contr.poly"))
> final.mod<-lmer(uV~1+factor(congruity)*factor(laterality)*factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(final.mod)
Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) * factor(laterality) *     factor(anteriority) +      (1 | sent.id) + (1 | Subject)
   Data: selected.data

REML criterion at convergence: 372689.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-9.6772 -0.5979 -0.0016  0.5977 12.3439 

Random effects:
 Groups   Name        Variance Std.Dev.
 sent.id  (Intercept)   5.556   2.357  
 Subject  (Intercept)   6.752   2.599  
 Residual             186.232  13.647  
Number of obs: 46176, groups:  sent.id, 41; Subject, 30

Fixed effects:
                                                              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                                                  4.355e-01  6.039e-01  5.800e+01   0.721   0.4737    
factor(congruity)1                                           4.501e-01  6.396e-02  4.613e+04   7.037 1.99e-12 ***
factor(laterality)1                                          3.628e-01  8.983e-02  4.610e+04   4.039 5.38e-05 ***
factor(laterality)2                                         -5.732e-02  8.983e-02  4.610e+04  -0.638   0.5234    
factor(anteriority)1                                        -7.183e-01  6.352e-02  4.610e+04 -11.308  < 2e-16 ***
factor(congruity)1:factor(laterality)1                       1.433e-01  8.983e-02  4.610e+04   1.596   0.1106    
factor(congruity)1:factor(laterality)2                      -1.535e-01  8.983e-02  4.610e+04  -1.709   0.0875 .  
factor(congruity)1:factor(anteriority)1                      9.442e-02  6.352e-02  4.610e+04   1.487   0.1371    
factor(laterality)1:factor(anteriority)1                     2.282e-01  8.983e-02  4.610e+04   2.540   0.0111 *  
factor(laterality)2:factor(anteriority)1                    -2.121e-01  8.983e-02  4.610e+04  -2.362   0.0182 *  
factor(congruity)1:factor(laterality)1:factor(anteriority)1 -7.802e-03  8.983e-02  4.610e+04  -0.087   0.9308    
factor(congruity)1:factor(laterality)2:factor(anteriority)1 -1.141e-02  8.983e-02  4.610e+04  -0.127   0.8989    
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
                       (Intr) fctr(c)1 fctr(l)1 fct()2 fctr(n)1     fctr(cngrty)1:fctr(l)1 fc()1:()2 fctr(cngrty)1:fctr(n)1
fctr(cngr)1            -0.003                                                                                          
fctr(ltrl)1             0.000  0.000                                                                                   
fctr(ltrl)2             0.000  0.000   -0.500                                                                          
fctr(ntrr)1             0.000  0.000    0.000    0.000                                                                 
fctr(cngrty)1:fctr(l)1  0.000  0.000   -0.020    0.010  0.000                                                          
fctr()1:()2             0.000  0.000    0.010   -0.020  0.000   -0.500                                                 
fctr(cngrty)1:fctr(n)1  0.000  0.000    0.000    0.000 -0.020    0.000                  0.000                          
fctr(l)1:()1            0.000  0.000    0.000    0.000  0.000    0.000                  0.000     0.000                
fctr()2:()1             0.000  0.000    0.000    0.000  0.000    0.000                  0.000     0.000                
f()1:()1:()             0.000  0.000    0.000    0.000  0.000    0.000                  0.000     0.000                
f()1:()2:()             0.000  0.000    0.000    0.000  0.000    0.000                  0.000     0.000                
                       fctr(l)1:()1 f()2:( f()1:()1:
fctr(cngr)1                                         
fctr(ltrl)1                                         
fctr(ltrl)2                                         
fctr(ntrr)1                                         
fctr(cngrty)1:fctr(l)1                              
fctr()1:()2                                         
fctr(cngrty)1:fctr(n)1                              
fctr(l)1:()1                                        
fctr()2:()1            -0.500                       
f()1:()1:()            -0.020        0.010          
f()1:()2:()             0.010       -0.020 -0.500   
> anova(final.mod)
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                                                          Sum Sq Mean Sq NumDF DenDF F.value    Pr(>F)    
factor(congruity)                                         9221.9  9221.9     1 46129  49.518 1.993e-12 ***
factor(laterality)                                        3511.5  1755.7     2 46095   9.428 8.062e-05 ***
factor(anteriority)                                      23814.0 23814.0     1 46095 127.873 < 2.2e-16 ***
factor(congruity):factor(laterality)                       680.3   340.1     2 46095   1.826   0.16101    
factor(congruity):factor(anteriority)                      411.5   411.5     1 46095   2.210   0.13714    
factor(laterality):factor(anteriority)                    1497.4   748.7     2 46095   4.020   0.01796 *  
factor(congruity):factor(laterality):factor(anteriority)     8.6     4.3     2 46095   0.023   0.97713    
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Ist das ein ausgewogenes Design? Außerdem gehe ich davon aus, dass sent.id die Sensor-ID ist. In diesem Fall haben Sie anscheinend einen zufälligen Effekt für die Sensorpositionen und feste Effekte für die Sensorpositionen.
Dbwilson

Das Design ist im Prinzip ausgewogen, obwohl einige Daten fehlen (~ 5% über meinem Kopf), die jedoch mehr oder weniger gleichmäßig über die Zellen verteilt sind. sent.id ist Satz-ID - die Stimuli sind Sätze und daher gibt es zufällige Effekte für diese.
Ishisht

1
+1. Schauen Sie sich einige der Top-Ergebnisse dieser Suche an: stats.stackexchange.com/search?q=%5Blme4-nlme%5D+anova+summary - möglicherweise ist etwas relevant. Sind beide anova()und summary()von lmerMod?
Amöbe


Antworten:


3

Typ III-Tests erfordern eine korrekte Codierung, damit Effekte niedrigerer Ordnung aussagekräftig sind, insbesondere orthogonale Kontraste. Die R-Standardeinstellung contr.treatmentist nicht orthogonal, andere Kontraste sind jedoch vorhanden (z contr.sum. B. ). In Ihrem Code haben Sie anscheinend die Standardeinstellungen nicht geändert, daher sind Ihre Ergebnisse sogenannte einfache Haupteffekte. Wir diskutieren dies in unserem bald erscheinenden Kapitel hier , aber andere Referenzen sind leicht zu finden .

Um die richtigen Kontraste zu verwenden, führen Sie die folgenden Schritte aus, bevor Sie ein gemischtes Modell in R anpassen:

options(contrasts=c("contr.sum","contr.poly"))

Ein leichter zu merkender Code ist die Verwendung set_sum_contrasts() aus meinem afexPaket:

afex::set_sum_contrasts()

Bitte aktualisieren Sie Ihre Frage, wenn dies Ihr Problem nicht löst (vorzugsweise mit Daten, um das Problem neu zu erstellen).


(Übrigens frage ich mich, ob dieses Q als Duplikat von stats.stackexchange.com/questions/249884 geschlossen werden soll, nachdem Sie Ihr Kopfgeld gesammelt haben und Ihre Antwort hoffentlich akzeptiert wird. Vielleicht möchten Sie eine Antwort in diesem Thread veröffentlichen auch.)
Amöbe

@amoeba Danke für dein Feedback. Ich bin in Ordnung mit dem Schließen dieses (sollte OP zurückkehren). Aber ich sehe nicht, wie eine Antwort von mir auf die andere Frage etwas hinzufügen könnte. Vielleicht ist es eine effizientere Idee, den Link zum Kapitel zur akzeptierten Antwort hinzuzufügen, damit die Leute ihn noch lesen (und hoffentlich zitieren) können.
Henrik

1
Ich habe den Beitrag bearbeitet, um die Ergebnisse mit den aktualisierten Kontrasten anzuzeigen. Wie Sie sehen können, wird dadurch die Diskrepanz beseitigt. Ich hatte noch keine Zeit, Ihre Referenzen zu lesen, aber ich hoffe, das hilft mir auch, genau zu verstehen, wie der Unterschied in den Kontrasten hier einen so großen Unterschied hervorruft. Ich bin damit einverstanden, dass diese Frage im Wesentlichen ein Duplikat des oben genannten Beitrags ist (ich habe zuvor gesucht, aber ohne das lme4-nlme-Tag habe ich zu viele unabhängige Antworten erhalten, um etwas Nützliches zu finden), aber ich denke tatsächlich, dass es hilfreich ist, das Kapitel zu platzieren und / oder andere Referenzen dort.
Ishisht
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.