Kann jemand bitte das dynamische Zeitverzerren erklären, um die Ähnlichkeit von Zeitreihen zu bestimmen?


14

Ich versuche, das dynamische Zeitverzerrungsmaß zu erfassen, um Zeitreihen miteinander zu vergleichen. Ich habe drei Zeitreihendatensätze wie diesen:

T1 <- structure(c(0.000213652387565, 0.000535045478866, 0, 0, 0.000219346347883, 
0.000359669104424, 0.000269469145783, 0.00016051364366, 0.000181950509461, 
0.000385579332948, 0.00078170803205, 0.000747244535774, 0, 0.000622858922454, 
0.000689084895259, 0.000487983408564, 0.000224744353298, 0.000416449765747, 
0.000308388157895, 0.000198906016907, 0.000179549331179, 9.06289650172e-05, 
0.000253506844685, 0.000582896161212, 0.000386473429952, 0.000179839942451, 
0, 0.000275608635737, 0.000622665006227, 0.00036075036075, 0.00029057097196, 
0.000353232073472, 0.000394710874285, 0.000207555002076, 0.000402738622634, 
0, 0.000309693403531, 0.000506521463847, 0.000226988991034, 0.000414164423276, 
9.6590360282e-05, 0.000476689865573, 0.000377572210685, 0.000378967314069, 
9.25240562546e-05, 0.000172309813044, 0.000447627573859, 0, 0.000589333071408, 
0.000191699415317, 0.000362943471554, 0.000287549122975, 0.000311688311688, 
0.000724112961622, 0.000434656621269, 0.00122292103424, 0.00177549812586, 
0.00308008213552, 0.00164338537387, 0.00176056338028, 0.00180072028812, 
0.00258939580764, 0.00217548948513, 0.00493015612161, 0.00336344416683, 
0.00422716412424, 0.00313360554553, 0.00540144648906, 0.00425728829246, 
0.0046828437633, 0.00397219463754, 0.00501656412683, 0.00492700729927, 
0.00224424911165, 0.000634696755994, 0.00120550276557, 0.00125313283208, 
0.00164551010813, 0.00143575017947, 0.00237006940918, 0.00236686390533, 
0.00420336269015, 0.00329840900272, 0.00242005185825, 0.00326554846371, 
0.006217237596, 0.0037103784586, 0.0038714672861, 0.00455830066551, 
0.00361747518783, 0.00304147465438, 0.00476801760499, 0.00569875504121, 
0.00583855136233, 0.0050566695728, 0.0042220072126, 0.00408237321963, 
0.00255222610833, 0.00123507616303, 0.00178136133508, 0.00147434637311, 
0.00126742712294, 0.00186590371937, 0.00177226406735, 0.00249154653853, 
0.00549127279859, 0.00349072202829, 0.00348027842227, 0.00229555236729, 
0.00336862367661, 0.00383477593952, 0.00273999412858, 0.00349618180145, 
0.00376108175875, 0.00383351588171, 0.00368928059028, 0.00480028982882, 
0.00388823582602, 0.00745054380406, 0.0103754506287, 0.00822677278011, 
0.00778350981989, 0.0041831792162, 0.00537228238059, 0.00723645609231, 
0.0144428396845, 0.00893333333333, 0.0106231171714, 0.0158367059652, 
0.01811729548, 0.0207095263821, 0.0211700064641, 0.017604180993, 
0.0165804327375, 0.0188679245283, 0.0191859923629, 0.0269251008595, 
0.0351239669421, 0.0283510318573, 0.0346557651212, 0.0270022042616, 
0.0260845175767, 0.0349758630112, 0.0207069247809, 0.0106362024818, 
0.00981093510475, 0.00916507201128, 0.00887198986058, 0.0073929115025, 
0.00659077291791, 0.00716191546131, 0.00942304513143, 0.0106886280007, 
0.0123527175979, 0.0171022290546, 0.0142909490656, 0.0157642220699, 
0.0265140538974, 0.0194395354708, 0.0241685144124, 0.0229897123662, 
0.017921889568, 0.0155115839714, 0.0145263157895, 0.017609281127, 
0.0157671315949, 0.0190258751903, 0.0138453217956, 0.00958058335108, 
0.0122924304507, 0.00929741151611, 0.00885235535884, 0.00509319462505, 
0.0061314863177, 0.0063104189044, 0.00729117134253, 0.010843373494, 
0.0217755443886, 0.0181687353841, 0.0155402963498, 0.017310022503, 
0.0214746959003, 0.026357827476, 0.0194751217195, 0.0196820590462, 
0.0184317400812, 0.0130208333333, 0.0128666035951, 0.0120045731707, 
0.0122374253228, 0.00874940561103, 0.0114368092263, 0.00922893718369, 
0.00479041916168, 0.00644107774653, 0.00775830595108, 0.00829578041786, 
0.00681348095875, 0.00573782551125, 0.00772002058672, 0.0112488083889, 
0.00908907291456, 0.0157722638969, 0.00994270306707, 0.0134179772039, 
0.0126050420168, 0.0113648781554, 0.0153894803415, 0.0126959699913, 
0.0116655865198, 0.0112065745237, 0.0122006737686, 0.010251878038, 
0.010891174691, 0.0148273273273, 0.0138516532618, 0.0136552722011, 
0.00986993819758, 0.0097852677358, 0.00889011089726, 0.00816723383568, 
0.00917641660931, 0.00884466556108, 0.0182179529646, 0.0183156760639, 
0.0217806648835, 0.0171099125907, 0.0186579938377, 0.019360390076, 
0.0144603654529, 0.0177730696798, 0.0153226598566, 0.0134016909516, 
0.0126480805202, 0.0115501519757, 0.0127156322248, 0.0124326204138, 
0.0240245215806, 0.0130234933606, 0.0144222706691, 0.00854005693371, 
0.0053560967445, 0.00504132231405, 0.00288778877888, 0.00593526847816, 
0.00455653279644, 0.00433014040152, 0.00535770564135, 0.0131095962244, 
0.0126319758673, 0.0154982879798, 0.0125940464508, 0.0169948745616, 
0.0257535512184, 0.0256175663312, 0.0265191262043, 0.0228974403622, 
0.0193122555411, 0.0165794768612, 0.015658837248, 0.0168208578638, 
0.0129912843282, 0.0119498443154, 0.0112663755459, 0.00838112042347, 
0.00925767186696, 0.0113408269771, 0.0210861519924, 0.0156036134684, 
0.0121687119728, 0.011006497812, 0.0107891491985, 0.0134615384615, 
0.0147229755909, 0.015756893641, 0.0176257128046, 0.016776075857, 
0.0169553999263, 0.0179193118984, 0.0190055672874, 0.0183088625509, 
0.0155489923558, 0.0152507401094, 0.0160748342567, 0.0161532350605, 
0.0139190952588, 0.0161469457497, 0.0118186629035, 0.0109259765092, 
0.00950587391265, 0.00928986154533, 0.00815520645549, 0.00702576112412, 
0.00709539362541, 0.00827287768869, 0.0104688211197, 0.0130375888927, 
0.0160891089109, 0.0188415910677, 0.0203265044814, 0.0183175033921, 
0.0139940353292, 0.0124648170487, 0.0131685758095, 0.00957428620277, 
0.0119647893342, 0.00835800104475, 0.0101892285298, 0.00904207699194, 
0.00772134522992, 0.00740740740741, 0.00776823249863, 0.00642254601227, 
0.00484237572883, 0.00361539964823, 0.00414811817078, 0.00358072916667, 
0.00433306007729, 0.00485008818342, 0.00905280804694, 0.00931847250137, 
0.00779271381259, 0.00779912497622, 0.00908230842006, 0.0058152538582, 
0.0102777777778, 0.00807537012113, 0.00648535564854, 0.0145492582731, 
0.00694127317563, 0.00759878419453, 0.00789242911429, 0.00635050701629, 
0.00785233530492, 0.00607964332759, 0.00531968282646, 0.00361944157187, 
0.00305157155935, 0.00276327909119, 0.00318820364651, 0.00184464029514, 
0.00412550211703, 0.00516567972786, 0.00463655399342, 0.00702897308418, 
0.0100714154917, 0.00791168353266, 0.00959190791768, 0.00736, 
0.00738007380074, 0.012573964497, 0.0117919562013, 0.00842919476398, 
0.00778887565289, 0.00623967700496, 0.0062232955601, 0.00447815755803, 
0.00511135450894, 0.00502557659517, 0.00330328263712), .Tsp = c(1, 
15.9583333333333, 24), class = "ts")

T2 <- structure(c(0, 0, 0, 0, 0.000109673173942, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.66183574879e-05, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.43930526713e-05, 
0, 0, 0, 8.95255147717e-05, 0, 0, 0, 0, 0.000191699415317, 0.000207792207792, 
0, 0, 0, 0.00019727756954, 0.000205338809035, 0.000205423171734, 
0.000704225352113, 0.000450180072029, 0.000493218249075, 0.000120860526952, 
0.000410846343468, 0.000384393619066, 0.000643264105863, 0.000189915487608, 
0.000915499404925, 0.000185099490976, 0.000936568752661, 0.000451385754266, 
0.000757217226692, 0.000273722627737, 0.000187020759304, 0.000211565585331, 
0.000141823854772, 9.63948332369e-05, 0.000117536436295, 0.000287150035894, 
0, 0, 0.000400320256205, 0.000388048117967, 0.000345721694036, 
0.000296868042155, 0.000609533097647, 0.000424043252412, 0.000290360046458, 
0.000546996079861, 0.000556534644282, 0.00036866359447, 0.000275077938749, 
0.000964404699281, 0.00152310035539, 0.00113339145597, 0.00061570938517, 
0.000362877619523, 0.000472634464505, 0.000102923013586, 0.000187511719482, 
0.000294869274622, 0.00011522064754, 0.000248787162582, 0, 0.00035593521979, 
0.000392233771328, 0.000551166636046, 0.000165727543918, 0.000143472022956, 
0.00012030798845, 0.000438260107374, 0.000195713866327, 0.000184009568498, 
0.000537297394108, 0.000365096750639, 0.000102480016397, 0.000452857531021, 
0.000180848177955, 0.000770745910765, 0.00219818869252, 0.000357685773048, 
0.000362023712553, 0.000660501981506, 0.000419709560984, 0.000488949735967, 
0.00177758026886, 4e-04, 0.000475661962898, 0.000879816998064, 
0.0014942099365, 0.00378173960022, 0.00274725274725, 0.00192545729611, 
0.0016462841016, 0.00176238855484, 0.00260780478718, 0.00447289949132, 
0.0034435261708, 0.00290522941294, 0.002694416055, 0.0041329904482, 
0.00729244577412, 0.0296930503689, 0.00982375036117, 0.00453023439039, 
0.00327031170158, 0.00221573169503, 0.00211237853823, 0.00108719286801, 
0.00131815458358, 0.000983008004494, 0.00132253265002, 0.00227790432802, 
0.00247054351957, 0.00307455803228, 0.0029314767314, 0.00222755311857, 
0.00492610837438, 0.00454430699318, 0.00753880266075, 0.00671845475541, 
0.00590490003108, 0.00288356368698, 0.00294736842105, 0.00248601615911, 
0.00197089144936, 0.00326157860404, 0.00302866414278, 0.00202256759634, 
0.00258788009489, 0.00169043845747, 0.00137000737696, 0.000433463372345, 
0.000908368343363, 0.000805585392052, 0.00142653352354, 0.00189328743546, 
0.00558347292016, 0.00161899622234, 0.00162631008312, 0.00276960360048, 
0.00585673524553, 0.00519169329073, 0.0045125282033, 0.00562344544176, 
0.00322815786733, 0.00330528846154, 0.00255439924314, 0.00285823170732, 
0.00240894199268, 0.00218735140276, 0.00201826045171, 0.00168701002282, 
0.000460617227084, 0.00127007166833, 0.00109529025192, 0.000819336337567, 
0.00158170093685, 0.000588494924231, 0.00120089209127, 0.00305052430887, 
0.00161583518481, 0.00211579149837, 0.0010111223458, 0.00346270379455, 
0.00228091236495, 0.00207627581685, 0.00295140718878, 0.0022121765894, 
0.00240718451995, 0.00224131490474, 0.0031867431485, 0.00176756517897, 
0.00233382314807, 0.00178303303303, 0.00169794459339, 0.00162778079219, 
0.000737939304492, 0.00135906496331, 0.000733205022454, 0.000875060768109, 
0.00114705207616, 0.000967385295744, 0.00182179529646, 0.00359130903214, 
0.00420328620558, 0.00446345545843, 0.00376583361862, 0.00659687365553, 
0.00433810963586, 0.00353107344633, 0.00333955407131, 0.00341788091383, 
0.0024939877082, 0.00538428137212, 0.00906989151698, 0.00773778473309, 
0.0210421671775, 0.00859720803541, 0.00511487506289, 0.00406669377796, 
0.00117164616286, 0.00206611570248, 0.00107260726073, 0.00148381711954, 
0.000741761152909, 0.00104973100643, 0.00110305704381, 0.00209753539591, 
0.00452488687783, 0.00486574157506, 0.00850507033039, 0.0101159967629, 
0.0163991223005, 0.0150452373691, 0.0156443766097, 0.0112310639039, 
0.00635593220339, 0.00627766599598, 0.00583041812427, 0.00622371740959, 
0.00624897220852, 0.00420769166036, 0.00305676855895, 0.00291133656815, 
0.00120006857535, 0.00501806503412, 0.00490575781048, 0.00593119810202, 
0.00226874291018, 0.00304999336958, 0.00339087546239, 0.00541958041958, 
0.00445563734986, 0.00431438754455, 0.0038016243304, 0.0037928519329, 
0.00491460867428, 0.00460782305959, 0.00508734881935, 0.00300725278613, 
0.00390896455872, 0.00367811967345, 0.00953591862683, 0.00529614264278, 
0.00243584167029, 0.00427167876976, 0.00291056623743, 0.00227624510607, 
0.00439422473321, 0.00232246538633, 0.00317623830372, 0.00263466042155, 
0.00180200473026, 0.00190912562047, 0.0034896070399, 0.00338638672536, 
0.00548090523338, 0.00697836706211, 0.00720230473752, 0.00746268656716, 
0.00367056664373, 0.0032167269803, 0.00523135203391, 0.00299196443837, 
0.00299119733356, 0.00287306285913, 0.00154657933042, 0.00214861235452, 
0.00163006177076, 0.00157407407407, 0.00137086455858, 0.00124616564417, 
0.000790591955727, 0.00107484854407, 0.00121408336706, 0.00108506944444, 
0.00105398758637, 0.000881834215168, 0.00184409052808, 0.00237529691211, 
0.0013637249172, 0.00190222560396, 0.00264900662252, 0.00156564526951, 
0.00263888888889, 0.00183531139117, 0.00303347280335, 0.0120768352986, 
0.00365330167139, 0.00351443768997, 0.00263080970476, 0.0029703984431, 
0.00265143789517, 0.0014185834431, 0.00150557061126, 0.00144777662875, 
0.00111890957176, 0.000716405690308, 0.000797050911627, 0.000512400081984, 
0.000868526761481, 0.00113392969636, 0.00134609632067, 0.00240013715069, 
0.00128181651712, 0.00110395584177, 0.00156958493198, 0.00208, 
0.00184501845018, 0.00110946745562, 0.000736997262582, 0.00208250694169, 
0.00229084578026, 0.00137639933933, 0.00111462010032, 0.000822518735149, 
0.00200803212851, 0.000987166831194, 0.00041291032964), .Tsp = c(1, 
15.9583333333333, 24), class = "ts")

T3 <- structure(c(0.00192287148809, 0.00149812734082, 0.00192410475681, 
0.00151122625216, 0.00120640491336, 0.00167845582065, 0.00121261115602, 
0.000802568218299, 0.00109170305677, 0.00250626566416, 0.00273597811218, 
0.00242854474127, 0.00160915430002, 0.00124571784491, 0.00192943770673, 
0.00329388800781, 0.00191032700303, 0.00156168662155, 0.00174753289474, 
0.0014917951268, 0.00143639464943, 0.000543773790103, 0.000929525097178, 
0.00141560496294, 0.000966183574879, 0.000719359769805, 0.00190740419629, 
0.00137804317869, 0.00197177251972, 0.001443001443, 0.00203399680372, 
0.00158954433063, 0.00256562068285, 0.00228310502283, 0.00302053966975, 
0.00227352221056, 0.00263239393001, 0.00202608585539, 0.00272386789241, 
0.00269206875129, 0.0027045300879, 0.00276480122033, 0.00405890126487, 
0.00341070582662, 0.00351591413768, 0.00336004135436, 0.00358102059087, 
0.00257289879931, 0.00235733228563, 0.00239624269146, 0.00136103801833, 
0.000862647368926, 0.00145454545455, 0.00168959691045, 0.00246305418719, 
0.0020964360587, 0.00335371868219, 0.00390143737166, 0.00349219391947, 
0.00334507042254, 0.00255102040816, 0.00332922318126, 0.00386753686246, 
0.00246507806081, 0.00432442821449, 0.00312442565705, 0.00408318298357, 
0.00375354756019, 0.00416473854697, 0.00263942103023, 0.0028888688273, 
0.00321817321344, 0.00310218978102, 0.002150738732, 0.00296191819464, 
0.00134732662034, 0.00221708116445, 0.00152797367184, 0.00157932519742, 
0.00220077873709, 0.00207100591716, 0.00260208166533, 0.00310438494373, 
0.00311149524633, 0.00385928454802, 0.00292575886871, 0.00222622707516, 
0.00329074719319, 0.00282614641262, 0.00287542899545, 0.00221198156682, 
0.00311754997249, 0.00315623356128, 0.00287696733796, 0.00296425457716, 
0.00263875450787, 0.00208654631226, 0.00179601096512, 0.00164676821737, 
0.00206262891431, 0.00235895419697, 0.00241963359834, 0.0028610523697, 
0.00516910352976, 0.00160170848905, 0.00254951951363, 0.00275583318023, 
0.00298309579052, 0.00286944045911, 0.00288739172281, 0.00394434096636, 
0.00254428026226, 0.00285214831171, 0.0034924330617, 0.00246440306681, 
0.00266448042632, 0.00389457476678, 0.00253187449136, 0.00171276869059, 
0.00184647850171, 0.00134132164893, 0.00153860077835, 0.000990752972259, 
0.00117518677075, 0.00312927831019, 0.00188867903566, 0.0024, 
0.00269541778976, 0.00263945099419, 0.00242809114681, 0.00378173960022, 
0.00274725274725, 0.00165039196809, 0.00211665098777, 0.00290275761974, 
0.00149017416411, 0.00105244693913, 0.00309917355372, 0.00240432779002, 
0.00297314875035, 0.0015613519471, 0.00196335078534, 0.00227707441479, 
0.00279302706347, 0.00295450068938, 0.00316811446091, 0.00211501661799, 
0.00168990283059, 0.00195694716243, 0.00131815458358, 0.00112343771942, 
0.00214911555629, 0.00157701068863, 0.00171037628278, 0.00230591852421, 
0.00183217295713, 0.00102810143934, 0.00130396986381, 0.00151476899773, 
0.00188470066519, 0.00220449296662, 0.00238267895991, 0.00238639753406, 
0.00147368421053, 0.00113942407292, 0.0018192844148, 0.00152207001522, 
0.00151433207139, 0.00117096018735, 0.000862626698296, 0.00095087163233, 
0.00137000737696, 0.00119202427395, 0.00170319064381, 0.000805585392052, 
0.0012680297987, 0.00189328743546, 0.00186115764005, 0.000719553876597, 
0.000903505601735, 0.000865501125151, 0.00210241778045, 0.00146432374867, 
0.00130625816411, 0.0011895749973, 0.00135374362178, 0.00120192307692, 
0.00160832544939, 0.0015243902439, 0.00240894199268, 0.00218735140276, 
0.00230658337338, 0.00188548179022, 0.0016582220175, 0.00263086274154, 
0.00155166119022, 0.00204834084392, 0.00194670884536, 0.00308959835221, 
0.00154400411734, 0.00152526215443, 0.00343364976772, 0.00269282554337, 
0.00235928547354, 0.00230846919636, 0.00300120048019, 0.00327833023713, 
0.00347844418678, 0.00259690295277, 0.00157392833997, 0.00345536047815, 
0.00336884275699, 0.0023862129916, 0.00216094735932, 0.00478603603604, 
0.00330652368186, 0.00551636824019, 0.00313624204409, 0.00253692126484, 
0.00201631381175, 0.00243072435586, 0.00229410415233, 0.00386954118297, 
0.00298111957602, 0.00305261267732, 0.0038211692778, 0.00334759159383, 
0.00479287915098, 0.0045891294995, 0.00525831471014, 0.00800376647834, 
0.0076613299283, 0.00638604065479, 0.00587868531219, 0.00633955709944, 
0.00453494575849, 0.00617283950617, 0.00314804075884, 0.00425604358189, 
0.00536642629549, 0.00422936152908, 0.00234329232572, 0.00454545454545, 
0.00305280528053, 0.00389501993879, 0.0040267034015, 0.00275554389188, 
0.00409706901986, 0.00506904387345, 0.0065987933635, 0.00594701748063, 
0.00343473994112, 0.00579983814405, 0.00750664048966, 0.00365965233303, 
0.00467423447486, 0.00348250043531, 0.00464471968709, 0.00603621730382, 
0.00358154256205, 0.00445752733389, 0.00501562243052, 0.0035344609947, 
0.00410480349345, 0.00467578297309, 0.00265729470255, 0.00210758731433, 
0.00223771408899, 0.00218998083767, 0.00309374033206, 0.00291738496221, 
0.00184956843403, 0.00297202797203, 0.00329329717164, 0.00318889514162, 
0.00397442543632, 0.00481400437637, 0.002580169554, 0.00440303092361, 
0.00335956997504, 0.00318415000884, 0.00269284225156, 0.00242217637032, 
0.00381436745073, 0.00238326418925, 0.0037407568508, 0.00290474156343, 
0.00335156112189, 0.00227624510607, 0.00376647834275, 0.00223313979455, 
0.00197441840501, 0.00214676034348, 0.00225250591283, 0.00140002545501, 
0.0034896070399, 0.00220115137149, 0.002828854314, 0.00418702023726, 
0.00176056338028, 0.00393487109905, 0.00217939894471, 0.00331724969843, 
0.00234508884279, 0.00282099504189, 0.00239295786685, 0.00269893783737, 
0.00263828238719, 0.00250671441361, 0.00231640356898, 0.00231481481481, 
0.00127947358801, 0.0017254601227, 0.00207530388378, 0.00185655657612, 
0.00131525698098, 0.00227864583333, 0.0018737557091, 0.00220458553792, 
0.00184409052808, 0.00109629088251, 0.00253263198909, 0.00228267072475, 
0.00170293282876, 0.00134198165958, 0.000833333333333, 0.00269179004038, 
0.00198744769874, 0.00209205020921, 0.00146132066855, 0.00113981762918, 
0.00185131053298, 0.00194612311789, 0.00203956761167, 0.00111460127673, 
0.00170631335943, 0.00186142709411, 0.00183094293561, 0.00194452973084, 
0.0014944704593, 0.00153720024595, 0.00184561936815, 0.00151190626181, 
0.000897397547113, 0.00222869878279, 0.00201428309833, 0.00202391904324, 
0.00244157656087, 0.00256, 0.00184501845018, 0.00160256410256, 
0.00115813855549, 0.0016858389528, 0.001741042793, 0.0026610387227, 
0.00167193015047, 0.00201060135259, 0.00219058050383, 0.00233330341919, 
0.000963457435827), .Tsp = c(1, 15.9583333333333, 24), class = "ts")

Ich weiß, dass T1 und T2 korreliert sind und betrachte sie als Grundwahrheit, daher sollte jede Entfernungsmetrik mir sagen, dass (T1, T2) näher sind als (T2, T3) und (T1, T3). Bei der Verwendung dtwin R erhalte ich jedoch Folgendes:

> dtw(T1, T2, k = TRUE)$distance; dtw(T1, T3, k = TRUE)$distance; dtw(T3, T2, k = TRUE)$distance
[1] 1.107791
[1] 1.568011
[1] 0.4102962

Kann jemand erklären, wie Dynamic Time Warping für Abfragen nach dem nächsten Nachbarn verwendet wird?


1
Können Sie erklären, was Sie in diesem Zusammenhang mit einer "Nächsten-Nachbar-Abfrage" meinen und wie sie mit dtw zusammenhängt?
whuber

@whuber: Mein Eindruck von DTW war, dass es eine Distanzmetrik für Zeitreihen ist. Und es gibt dieses Papier, das anzeigt, dass: Faster Retrieval with a Two-Pass Dynamic-Time-Warping Lower Boundvon Daniel Lemire et. al mit dem Code unter code.google.com/p/lbimproved Ich versuche jedoch, diese Metrik zu verstehen, bevor ich sie verwende.
Legende

Antworten:


22

Dynamisches Time Warping stellt eine bestimmte Annahme in Bezug auf Ihren Datensatz: Ein Vektor ist eine nichtlineare zeitversetzte Folge des anderen. Es wird aber auch davon ausgegangen, dass die tatsächlichen Werte in der gleichen Größenordnung liegen.

Können sagen , Sie haben: , a ( x ) = 1 sin ( 0,01 * x ) , b ( x ) = 1 sin ( 0,01234 * x ) , c ( x ) = 1000 sin ( 0,01 x ) .x=1..10000a(x)=1sin(0.01x)b(x)=1sin(0.01234x)c(x)=1000sin(0.01x)

Dann sind und b in der DTW extrem ähnlich, während sich a und c fast so stark unterscheiden wie in Manhattan. Wenn Sie jedoch eine Frequenzanalyse durchführen, sind und in Bezug auf ihre Frequenzen identisch und unterscheiden sich nur in der Größe, während und eine deutlich unterschiedliche Frequenz haben.abacacab

DTW ist nicht Ihre magische Waffe, um alle Ihre Zeitreihen-Matching-Anforderungen zu erfüllen. Es werden bestimmte Annahmen über die Art der Ähnlichkeit getroffen, an der Sie interessiert sind . Wenn das nicht Ihren Daten entspricht, funktioniert es nicht gut. Gemessen an den von Ihnen geteilten Datenreihen benötigen Sie keine zeitliche Ausrichtung (wie dies bei DTW der Fall ist), sondern vielmehr eine angemessene Normalisierung und möglicherweise Fourier-Transformationen. Treshhold-Überquerungsentfernungen könnten auch für Sie gut funktionieren, siehe zum Beispiel:

  • Ähnlichkeitssuche anhand von Zeitreihen anhand von Schwellenwerten
    Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey Pryakhin und Matthias Renz, EDBT 2006

+1 Vielen Dank für Ihre Vorschläge. Könnten Sie mich auch auf einige Arbeiten zu Fourier-Transformationen hinweisen? Und schließlich habe ich mich gefragt, ob es da draußen praktische Implementierungen gibt, die ich ausprobieren kann. Ich meine, einige Datenbanken, die dies tatsächlich in Aktion umsetzen.
Legende

1
Bei der Suche stieß ich auf die symbolische Repräsentationsarbeit von SAX von Keogh et. al von Univ. von Riverside. Würdest du dazu zufällig Kommentare haben?
Legende

Ein Freund experimentierte mit SAX für Bewegungszeitreihen (dh Bewegungsklassifikation). Bei ihm hat es nicht geklappt. Deshalb habe ich es nicht vorgeschlagen. Keogh produziert Papiere wie verrückt, aber sie sind meiner Meinung nach nicht sehr überzeugend. Er muss mindestens 10 Distanzfunktionen für Zeitreihen vorgeschlagen haben, die sich natürlich alle gegenseitig übertreffen.
Anony-Mousse

2
@Anony Ich schimpfe mit „Keogh produziert Papiere wie verrückt, aber sie sind meiner Meinung nach nicht sehr überzeugend. Er muss mindestens 10 Abstandsfunktionen für Zeitreihen vorgeschlagen haben, die sich natürlich alle gegenseitig übertreffen. “Ich habe NICHT„ mindestens 10 Abstandsfunktionen für Zeitreihen “vorgeschlagen. Ich plädiere nachdrücklich für 2 Distanzfunktionen für Zeitreihen 1) Euklidische Distanz (ED): zweitausend Jahre alt 2) DTW: 50 Jahre Diese beiden Maßnahmen werden in 90% meiner Arbeiten verwendet, und ich habe sie auch nicht vorgeschlagen oder erfunden. Ich habe kleinere Änderungen an ED und DTW vorgeschlagen. Sie sagen: "Sie sind meiner Meinung nach nicht sehr überzeugend." ...

2
Ich teste mit reproduzierbaren Experimenten jeden öffentlichen Datensatz der Welt und gebe meinen gesamten Code weiter. Vielleicht fällt es einigen Leuten hier schwer, eine meiner Ideen zu verwenden, aber mehr als 2.000 Leute haben eine meiner Ideen erfolgreich verwendet (auf Google klicken). Vielleicht liegt das Problem nicht bei den Ideen.

4

In den achtziger Jahren wurde das dynamische Zeitverzerren als Methode für den Vorlagenabgleich bei der Spracherkennung verwendet. Ziel war es, Zeitreihen der analysierten Sprache mit gespeicherten Vorlagen, meist ganzen Wörtern, abzugleichen. Die Schwierigkeit besteht darin, dass die Leute unterschiedlich schnell sprechen. DTW wurde verwendet, um das unbekannte Muster in der Vorlage zu registrieren. Es wurde "Gummiplatte" passend genannt. Grundsätzlich durchsuchen Sie einige eingeschränkte Möglichkeiten, wie die Zeitreihen lokal gestreckt werden können, um die globale Anpassung zu optimieren. Es hat sich gezeigt, dass dieser Ansatz mit Hidden-Markov-Modellen vergleichbar ist.


4

Zunächst sagen Sie "dynamische Zeitverzerrungsmetrik", DTW ist jedoch ein Abstandsmaß, jedoch keine Metrik (es wird die dreieckige Ungleichung nicht berücksichtigt).

In Paper [a] wird die DTW mit 12 Alternativen für 43 Datensätze verglichen. Bei den meisten Problemen funktioniert die DTW sehr gut.

Wenn Sie mehr über DTW erfahren möchten, können Sie einen Blick auf das Keoghs-Tutorial werfen: http://www.cs.ucr.edu/~eamonn/Keogh_Time_Series_CDrom.zip (Warnung: 500 Meg.)

Der Pass ist peggy.

Es gibt auch ein Tutorial zu SAX unter http://www.cs.ucr.edu/~eamonn/SIGKDD_2007.ppt

[a] Xiaoyue Wang, Goce Trajcevski, Hui Ding, Peter Scheuermann, Eamonn J. Keogh: Experimenteller Vergleich von Darstellungsmethoden und Abstandsmessungen für Zeitreihendaten CoRR abs / 1012.2789: (2010)


+1 Vielen Dank für Ihre Antwort. Ich habe meine Frage korrigiert. Ich verstehe jetzt, dass Sie ein Pionier in Zeitreihen sind. Es wäre großartig, wenn Sie einige Vorschläge zu meinem speziellen Fall hätten, die ich in einen der Kommentare einfügte: Die Zeitreihendaten, die ich habe, stammen von einem internen twitter-ähnlichen Netzwerk, und die Reihe selbst repräsentiert die Anzahl der Nachrichten, die auf einer bestimmten Website generiert wurden Thema. Ich möchte andere Themen mit einem ähnlichen Zeitplan wie dem angegebenen finden. Nochmals vielen Dank für Ihre Zeit.
Legende
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.