dX∼Nd(μ,Σ)μ=(μ1,…,μd)TΣjk=cov(Xj,Xk)j,k=1,…,d
φX(t)=E[exp(itTX)]=exp(itTμ−12tTΣt)
=exp(i∑j=1dtjμj−12∑j=1d∑k=1dtjtkΣjk)
Y∼N1(μY,σ2Y)
φY(t)=exp(itμY−12t2σ2Y)
Z=aTX=∑dj=1ajXjd=2a1=a2=1ZX
φZ(t)=E[exp(itZ)]=E[exp(itaTX)]=φX(ta)
=exp(it∑j=1dajμj−12t2∑j=1d∑k=1dajakΣjk)
φY(t)μYμZ=∑dj=1ajμjσ2Yσ2Z=∑dj=1∑dk=1ajakΣjkZYZΣjk=Σkj
σ2Z=∑j=1da2jΣjj+2∑j=2d∑k=1j−1ajakΣjk
Σjj=var(Xj)Σjk=cov(Xj,Xk)d=2a1=a2=1
σ2Z=∑j=12(1)2Σjj+2∑j=22∑k=1j−1(1)(1)Σjk=Σ11+Σ22+2Σ21