Interpretation des Konfidenzintervalls


15

Hinweis: Falls es sich um ein Duplikat handelt, bitte im Voraus um Entschuldigung. Ich habe bei meiner Suche kein ähnliches q gefunden

Angenommen, wir haben einen wahren Parameter p. Ein Konfidenzintervall C (X) ist ein RV, das p enthält, beispielsweise 95% der Zeit. Nehmen wir nun an, wir beobachten X und berechnen C (X). Die übliche Antwort scheint zu sein, dass es falsch ist, dies so zu interpretieren, dass es eine "95% ige Chance gibt, p zu enthalten", da es "entweder p enthält oder nicht".

Nehmen wir jedoch an, ich wähle eine Karte oben auf einem gemischten Stapel aus und lasse sie verdeckt liegen. Intuitiv halte ich die Wahrscheinlichkeit, dass diese Karte das Pik-As ist, für 1: 52, obwohl sie in Wirklichkeit "entweder das Pik-As ist oder nicht". Warum kann ich diese Argumentation nicht auf das Beispiel des Konfidenzintervalls anwenden?

Oder wenn es nicht sinnvoll ist, von der "Wahrscheinlichkeit" zu sprechen, dass die Karte das Pik-As ist, da es "ist oder nicht" ist, würde ich immer noch mit einer Wahrscheinlichkeit von 51: 1 rechnen, dass es nicht das Pik-As ist. Gibt es ein anderes Wort, um diese Informationen zu beschreiben? Wie unterscheidet sich dieses Konzept von "Wahrscheinlichkeit"?

edit: Vielleicht, um klarer zu sein, aus einer Bayes'schen Interpretation der Wahrscheinlichkeit, wenn mir gesagt wird, dass eine Zufallsvariable p 95% der Zeit enthält, wenn man bedenkt, dass diese Zufallsvariable realisiert ist (und es keine anderen Informationen gibt, die zu bedingen sind) richtig zu sagen, die Zufallsvariable hat eine 95% ige Wahrscheinlichkeit, p zu enthalten?

edit: Nehmen wir auch an, der Frequentist sagt aus einer häufigen Interpretation der Wahrscheinlichkeit nichts wie "Es gibt eine Wahrscheinlichkeit von 95%, dass das Konfidenzintervall p enthält". Ist es für einen Frequentisten immer noch logisch, ein "Vertrauen" zu haben, dass das Vertrauensintervall p enthält?

Sei Alpha das Signifikanzniveau und sei t = 100-Alpha. K (t) ist das "Vertrauen" des Frequentisten, dass das Vertrauensintervall p enthält. Es ist sinnvoll, dass K (t) in t zunimmt. Wenn t = 100% ist, sollte der Frequentist (per Definition) die Gewissheit haben, dass das Konfidenzintervall p enthält, damit wir K (1) = 1 normalisieren können. In ähnlicher Weise ist K (0) = 0. Vermutlich liegt K (0,95) irgendwo dazwischen 0 und 1 und K (0,999999) ist größer. Inwiefern würde der Frequentist K anders betrachten als P (die Wahrscheinlichkeitsverteilung)?


1
Betrachten wir in der Tat einen Münzwurf, bei dem die Münze nicht sichtbar unter einem Tisch rollt, und betrachten wir das Ereignis, dass die Münze auf dem Kopf landet. Auf den ersten Blick scheint dies dem CI-Problem sehr ähnlich zu sein - entweder passierte das Ereignis oder es passierte nicht. Doch im Fall des Münzwurfs scheinen viele (vielleicht sogar die meisten) Frequentisten vollkommen glücklich zu sein, der unbeobachteten Münze, die auf den Köpfen gelandet ist, eine fiktive Wahrscheinlichkeit (sagen wir p ) zuzuweisen , ohne dasselbe über das zufällige Intervall zu sagen, das das enthält Parameter. Für mich scheint es eine Inkonsistenz zu geben.
Glen_b

@Glen_b In dem Szenario, in dem nicht beobachtete Münzen fallengelassen werden, wird kontrafaktisch argumentiert, dass der tatsächliche Nennwert der Münze nicht "zufällig" ist (obwohl er nicht beobachtet wird), sondern dass wir die beobachteten Ergebnisse auf andere potenzielle Ergebnisse in diesem Fall verallgemeinern können prägen und Wahrscheinlichkeiten berechnen. Was die Wahrscheinlichkeit für den tatsächlichen Nennwert der Münze betrifft, gibt es keine Wahrscheinlichkeit. Das p wird für die kontrafaktische Konstruktion dieser Einstellung gespeichert. p
AdamO

@ Glen_b: Ich stimme zu, siehe meine Frage hier: stats.stackexchange.com/questions/233588/…
vonjd

@vonjd Inwieweit ist deine Frage dort nicht einfach ein Duplikat des ersten Absatzes nach der Eröffnung "Hinweis:" hier?
Glen_b -Reinstate Monica

@ Glen_b: Um ehrlich zu sein, war mir diese Frage nicht bewusst, als ich meine gepostet habe und sie überschneiden sich mit Sicherheit. Ich denke jedoch, dass es sich nicht um Duplikate handelt, da es mir allgemein darum geht, Wahrscheinlichkeiten für versteckte Ergebnisse zu verwenden (was Konsequenzen für Konfidenzintervalle haben würde), wohingegen dieses rein auf Konfidenzintervalle abzielt. Aber wenn du denkst, dass meins ein Duplikat ist, kannst du es gerne schließen.
Vonjd

Antworten:


8

Ich denke, viele konventionelle Berichte über diese Angelegenheit sind nicht klar.

Nehmen wir an, Sie nehmen eine Stichprobe der Größe und erhalten ein Konfidenzintervall von 95 % für p .10095%p

Dann nehmen Sie eine weitere Stichprobe von , unabhängig von der ersten, und erhalten ein weiteres 95 % -Konfidenzintervall für p .10095%p

Was sich ändert, ist das Konfidenzintervall; was sich nicht ändert ist . p Das bedeutet, dass man bei häufig verwendeten Methoden sagt, das Konfidenzintervall sei "zufällig", jedoch "fest" oder "konstant", dh nicht zufällig. Bei häufig vorkommenden Methoden wie der Methode der Konfidenzintervalle werden Wahrscheinlichkeiten nur zufälligen Dingen zugewiesen.p

Also ist und ( L , U ) ein Konfidenzintervall. ( L = "Unter" und U = "Ober".) Nehmen Sie eine neue Probe und L und U ändern sich, aber p nicht.Pr(L<p<U)=0.95(L,U)L=U=LUp

Angenommen, Sie haben in einem bestimmten Fall und U = 43,61 . Bei häufigeren Methoden würde man der Aussage 40.53 < p < 43.61 keine Wahrscheinlichkeit zuweisen , außer einer Wahrscheinlichkeit von 0 oder 1 , da hier nichts zufällig ist: 40.53 ist nicht zufällig, p ist nicht zufällig (da es sich nicht ändert, wenn wir nehmen eine neue Stichprobe) und 43,61 ist nicht zufällig.L=40.53U=43.6140.53<p<43.610140.53p43.61

In der Praxis verhalten sich Menschen so, als ob sie zu sicher wären , dass p zwischen 40,53 und 43,61 liegt . Und in der Praxis mag das oft Sinn machen. Aber manchmal nicht. Ein solcher Fall liegt vor, wenn Zahlen mit einer Größe von 40 oder mehr im Voraus als unwahrscheinlich bekannt sind oder wenn bekannt ist, dass sie sehr wahrscheinlich sind. Wenn man p eine vorherige Wahrscheinlichkeitsverteilung zuweisen kann , verwendet man das Bayes-Theorem, um ein glaubwürdiges Intervall zu erhalten, das sich vom Konfidenzintervall unterscheiden kann, weil man vorher weiß, in welchen Wertebereichen p liegt95%p40.5343.6140ppsind wahrscheinlich oder unwahrscheinlich. Es kann auch tatsächlich vorkommen, dass die Daten selbst - die Dinge, die sich ändern, wenn eine neue Stichprobe gezogen wird - Ihnen sagen können, dass wahrscheinlich nicht so groß ist wie 40 oder mit Sicherheit auch nicht . Dies kann auch in Fällen passieren, in denen das Paar ( L , U ) eine ausreichende Statistik für p ist . Dieses Phänomen kann in einigen Fällen durch die Fisher-Methode der Konditionierung auf eine Hilfsstatistik behoben werden. Ein Beispiel für dieses letzte Phänomen ist , wenn die Probe von nur zwei unabhängigen Beobachtungen besteht , die in dem Intervall gleichmäßig verteilt sind & thgr; ± 1 / 2p40(L,U)pθ±1/2. Dann ist das Intervall von der kleineren der beiden Beobachtungen zur größeren ein -Konfidenzintervall. Wenn der Abstand zwischen ihnen jedoch 0,001 beträgt , wäre es absurd, irgendwo in der Nähe von 50 % sicher zu sein, dass θ zwischen ihnen liegt, und wenn der Abstand 0,999 beträgt , wäre man vernünftigerweise fast 100 % sicher, dass θ zwischen ihnen liegt. Der Abstand zwischen ihnen wäre die Hilfsstatistik, unter der man bedingen würde.50%0.00150%θ0.999100%θ


Danke Michael, das macht sehr viel Sinn. Nehmen wir in Ihrem Beispiel an, wir haben ein bestimmtes (L, U), aber die Werte sind uns nicht bekannt. Wir wissen nur, dass es sich um die Realisierung einer 95% -Konfidenzintervall-Zufallsvariablen handelt. Wäre es fair, 19: 1-Gewinnchancen zu setzen, dass (L, U) den Parameter enthält, ohne vorher den Parameter oder andere Informationen zu haben? Wenn ein Frequentist dazu bereit ist, aber seine "Bereitschaft, 19: 1 zu legen" nicht als "Wahrscheinlichkeit" bezeichnet, wie würden wir das bezeichnen?
applicative_x

Ja, diese Wahrscheinlichkeit beträgt . Sicherlich kann man innerhalb der frequentistischen Methoden sagen, dass in einem Zustand der Unkenntnis von ( L , U ) die Wahrscheinlichkeit 0,95 beträgt, dass dieses Intervall p enthält . Wenn man jedoch bestimmte Werte hat, die nicht zufällig sind, weist der Frequentist der Aussage keine andere Wahrscheinlichkeit als 0 oder 1 zu, da die bekannten Werte von L und U nicht zufällig sind. 0.95(L,U)0.95p01LU
Michael Hardy

3

Die Lehrbuchdefinition eines % -Konfidenzintervalls lautet:100×(1α)

Ein Intervall, das unter vielen unabhängigen Replikationen der Studie unter idealen Bedingungen die Messung des replizierten Effekts % der Zeit erfasst .100×(1α)

Die Wahrscheinlichkeit für Frequentisten ergibt sich aus dem Gedanken, "Zeit und Raum zurückzuspulen", um Befunde zu replizieren, als ob eine unendliche Anzahl von Kopien der Welt geschaffen worden wäre, um einen wissenschaftlichen Befund immer wieder zu bewerten. Eine Wahrscheinlichkeit ist also genau eine Frequenz. Für Wissenschaftler ist dies eine sehr bequeme Möglichkeit, Ergebnisse zu diskutieren, da das erste Prinzip der Wissenschaft darin besteht, dass Studien reproduzierbar sein müssen.

In Ihrem Kartenbeispiel besteht die Verwirrung für Bayesianer und Frequentisten darin, dass der Frequentist dem Nennwert der bestimmten Karte, die Sie aus dem Stapel geworfen haben , keine Wahrscheinlichkeit zuweist, während dies ein Bayesianer tun würde. Der Frequentist würde die Wahrscheinlichkeit einer Karte zuweisen , die von der Oberseite des zufällig gemischten Kartensatzes geworfen wurde. Ein Bayesianer ist nicht daran interessiert, die Studie zu replizieren. Sobald die Karte umgedreht ist, haben Sie eine 100% ige Überzeugung, was die Karte ist, und eine 0% ige Überzeugung, dass sie einen anderen Wert annehmen könnte. Für die Bayesianer ist die Wahrscheinlichkeit ein Maß für den Glauben.

Beachten Sie, dass Bayesianer nicht haben Vertrauen Intervalle aus diesem Grund, sie zusammenfassen Unsicherheit mit Glaubwürdigkeit Abständen.


Danke für die Antwort. Stimmen im Kartenbeispiel nicht sowohl der Bayesianer als auch der Frequentist überein, dass 51: 1 eine faire Chance ist, dass die Karte das Pik-As ist? Würden für die Realisierung eines 95% -Konfidenzintervalls (und ohne weitere Informationen) nicht beide die 19: 1-Wahrscheinlichkeit ausmachen, dass es den wahren Parameter enthält? Könnte ein Bayesianer in diesem Sinne das 95% -Konfidenzintervall so interpretieren, dass die Wahrscheinlichkeit, den wahren Parameter zu enthalten, bei 95% liegt?
applicative_x

@applicative_x Was ist mit einem Pinochle-Deck? Sie erwägen die Verwendung von Vorinformationen. Die frequentistischen können vermuten , nur dass die Wahrscheinlichkeit verwenden und nur das Gesicht der Karte valueto zu informieren , ob dieses Experiment war konsistent oder inkonsistent mit dieser Hypothese. Die Gültigkeit jeder Art von Intervallschätzung (Glaubwürdigkeit oder Vertrauen) hängt von nicht überprüfbaren Annahmen ab. Es gibt keinen wahren Parameter, das ist eine gefährliche Denkweise über die Wissenschaft. Bayesianer spielen nicht mit Konfidenzintervallen gemäß der früheren Definition. Lesen Sie die Antwort noch einmal. p=1/52
AdamO

Danke Adam, ich glaube ich bin immer noch verwirrt. Nehmen wir an, ich weiß (anhand der Karten), dass ein Kartenspiel mit 52 Karten Standard ist. Ich mische den Stapel und suche die 10 besten Karten aus, ohne sie anzusehen. Konnte ich den "wahren Parameter" in diesem Fall nicht als Anzahl der roten Karten definieren? Dann gibt es, unabhängig vom Bayesian vs. Frequentist, einen "wahren Parameter". Wenn ich 7 Karten nach dem Zufallsprinzip auswählen darf, könnte ich mir auch vorstellen, ein Konfidenzintervall für die Anzahl der roten Karten aus meiner 10.
applicative_x

1
1/2

1
@AdamO: Ich finde deine Kommentare kryptisch. "Von welchem ​​Nutzen ist der Begriff" Wahrheit "?" ist ein Themenwechsel. "Wir halten die Wahrheit für unveränderlich." "Wir" bedeutet also Sie und wer sonst, und welche Relevanz hat das, was sie denken? "Kein Wissenschaftler würde jemals Daten sammeln, um etwas zu überprüfen, das bereits bekannt ist." Das scheint ein weiterer Themenwechsel zu sein. Dann folgen einige Kommentare zu Frequentisten und Bayesianern. Ich habe keine Lust zu erraten, was Sie sagen wollen.
Michael Hardy
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.