Die direkte Antwort auf Ihre Frage lautet: Das letzte Modell, das Sie geschrieben haben:
anova(lmer(y ~ a*b*c +(1|subject) + (1|a:subject) + (1|b:subject) + (1|c:subject) +
(1|a:b:subject) + (1|a:c:subject) + (1|b:c:subject), d))
Ich glaube, es ist "im Prinzip" richtig, obwohl es eine seltsame Parametrisierung ist, die in der Praxis nicht immer gut zu funktionieren scheint.
aov()
Ich denke, es gibt zwei Gründe, warum die Ausgabe, die Sie von diesem Modell erhalten, nicht mit der Ausgabe übereinstimmt.
- Ihr einfacher simulierter Datensatz ist insofern pathologisch, als das am besten passende Modell negative Varianzkomponenten impliziert, nach denen gemischte Modelle passen
lmer()
(und den meisten anderen gemischten Modellprogrammen) nicht zugelassen werden.
- Selbst mit einem nicht pathologischen Datensatz scheint die Art und Weise, wie Sie das Modell eingerichtet haben, wie oben erwähnt, in der Praxis nicht immer gut zu funktionieren, obwohl ich zugeben muss, dass ich nicht wirklich verstehe, warum. Es ist meiner Meinung nach auch nur allgemein seltsam, aber das ist eine andere Geschichte.
Lassen Sie mich zunächst die Parametrisierung demonstrieren, die ich in Ihrem ersten Zwei-Wege-ANOVA-Beispiel bevorzuge. Angenommen, Ihr Datensatz d
ist geladen. Ihr Modell (beachten Sie, dass ich von Dummy- zu Kontrastcodes gewechselt habe) war:
options(contrasts=c("contr.sum","contr.poly"))
mod1 <- lmer(y ~ a*b+(1|subject) + (1|a:subject) + (1|b:subject),
data = d[d$c == "1",])
anova(mod1)
# Analysis of Variance Table
# Df Sum Sq Mean Sq F value
# a 1 2.20496 2.20496 3.9592
# b 1 0.13979 0.13979 0.2510
# a:b 1 1.23501 1.23501 2.2176
was hier gut funktionierte, da es mit der aov()
Ausgabe übereinstimmte . Das Modell, das ich bevorzuge, beinhaltet zwei Änderungen: Manuelles Kontrastcodieren der Faktoren, damit wir nicht mit R-Faktor-Objekten arbeiten (was ich in 100% der Fälle empfehle) und unterschiedliche Angabe der Zufallseffekte:
d <- within(d, {
A <- 2*as.numeric(paste(a)) - 3
B <- 2*as.numeric(paste(b)) - 3
C <- 2*as.numeric(paste(c)) - 3
})
mod2 <- lmer(y ~ A*B + (1|subject)+(0+A|subject)+(0+B|subject),
data = d[d$c == "1",])
anova(mod2)
# Analysis of Variance Table
# Df Sum Sq Mean Sq F value
# A 1 2.20496 2.20496 3.9592
# B 1 0.13979 0.13979 0.2510
# A:B 1 1.23501 1.23501 2.2176
logLik(mod1)
# 'log Lik.' -63.53034 (df=8)
logLik(mod2)
# 'log Lik.' -63.53034 (df=8)
Die beiden Ansätze sind im einfachen Zwei-Wege-Problem völlig gleichwertig. Jetzt gehen wir zu einem 3-Wege-Problem über. Ich habe bereits erwähnt, dass der von Ihnen angegebene Beispieldatensatz pathologisch war. Bevor ich mich also mit Ihrem Beispieldatensatz befasse, möchte ich zunächst einen Datensatz aus einem tatsächlichen Varianzkomponentenmodell generieren (dh wenn Varianzkomponenten ungleich Null in das wahre Modell integriert sind). Zuerst werde ich zeigen, wie meine bevorzugte Parametrisierung besser zu funktionieren scheint als die von Ihnen vorgeschlagene. Dann werde ich einen anderen Weg zur Schätzung der Varianzkomponenten demonstrieren, der nicht impliziert, dass sie nicht negativ sein dürfen. Dann sind wir in der Lage, das Problem mit dem ursprünglichen Beispieldatensatz zu sehen.
Der neue Datensatz wird in seiner Struktur identisch sein, außer dass wir 50 Probanden haben werden:
set.seed(9852903)
d2 <- expand.grid(A=c(-1,1), B=c(-1,1), C=c(-1,1), sub=seq(50))
d2 <- merge(d2, data.frame(sub=seq(50), int=rnorm(50), Ab=rnorm(50),
Bb=rnorm(50), Cb=rnorm(50), ABb=rnorm(50), ACb=rnorm(50), BCb=rnorm(50)))
d2 <- within(d2, {
y <- int + (1+Ab)*A + (1+Bb)*B + (1+Cb)*C + (1+ABb)*A*B +
(1+ACb)*A*C + (1+BCb)*B*C + A*B*C + rnorm(50*2^3)
a <- factor(A)
b <- factor(B)
c <- factor(C)
})
Die F-Verhältnisse, die wir anpassen möchten, sind:
aovMod1 <- aov(y ~ a*b*c + Error(factor(sub)/(a*b*c)), data = d2)
tab <- lapply(summary(aovMod1), function(x) x[[1]][1,2:4])
do.call(rbind, tab)
# Sum Sq Mean Sq F value
# Error: factor(sub) 439.48 8.97
# Error: factor(sub):a 429.64 429.64 32.975
# Error: factor(sub):b 329.48 329.48 27.653
# Error: factor(sub):c 165.44 165.44 17.924
# Error: factor(sub):a:b 491.33 491.33 49.694
# Error: factor(sub):a:c 305.46 305.46 41.703
# Error: factor(sub):b:c 466.09 466.09 40.655
# Error: factor(sub):a:b:c 392.76 392.76 448.101
Hier sind unsere beiden Modelle:
mod3 <- lmer(y ~ a*b*c + (1|sub)+(1|a:sub)+(1|b:sub)+(1|c:sub)+
(1|a:b:sub)+(1|a:c:sub)+(1|b:c:sub), data = d2)
anova(mod3)
# Analysis of Variance Table
# Df Sum Sq Mean Sq F value
# a 1 32.73 32.73 34.278
# b 1 21.68 21.68 22.704
# c 1 12.53 12.53 13.128
# a:b 1 60.93 60.93 63.814
# a:c 1 50.38 50.38 52.762
# b:c 1 57.30 57.30 60.009
# a:b:c 1 392.76 392.76 411.365
mod4 <- lmer(y ~ A*B*C + (1|sub)+(0+A|sub)+(0+B|sub)+(0+C|sub)+
(0+A:B|sub)+(0+A:C|sub)+(0+B:C|sub), data = d2)
anova(mod4)
# Analysis of Variance Table
# Df Sum Sq Mean Sq F value
# A 1 28.90 28.90 32.975
# B 1 24.24 24.24 27.653
# C 1 15.71 15.71 17.924
# A:B 1 43.56 43.56 49.694
# A:C 1 36.55 36.55 41.703
# B:C 1 35.63 35.63 40.655
# A:B:C 1 392.76 392.76 448.101
logLik(mod3)
# 'log Lik.' -984.4531 (df=16)
logLik(mod4)
# 'log Lik.' -973.4428 (df=16)
Wie wir sehen können, stimmt nur die zweite Methode mit der Ausgabe von überein aov()
, obwohl sich die erste Methode zumindest im Baseballstadion befindet. Die zweite Methode erreicht auch eine höhere Log-Wahrscheinlichkeit. Ich bin mir nicht sicher, warum diese beiden Methoden unterschiedliche Ergebnisse liefern, da ich wiederum denke, dass sie "im Prinzip" äquivalent sind, aber vielleicht aus numerischen / rechnerischen Gründen. Oder vielleicht irre ich mich und sie sind selbst im Prinzip nicht gleichwertig.
Jetzt werde ich eine andere Möglichkeit zeigen, die Varianzkomponenten basierend auf traditionellen ANOVA-Ideen zu schätzen. Grundsätzlich nehmen wir die erwarteten mittleren Quadratgleichungen für Ihr Design, ersetzen die beobachteten Werte der mittleren Quadrate und lösen die Varianzkomponenten. Um die erwarteten mittleren Quadrate zu erhalten, verwenden wir eine R-Funktion, die ich vor einigen Jahren geschrieben habe EMS()
und die HIER dokumentiert ist . Unten gehe ich davon aus, dass die Funktion bereits geladen ist.
# prepare coefficient matrix
r <- 1 # number of replicates
s <- 50 # number of subjects
a <- 2 # number of levels of A
b <- 2 # number of levels of B
c <- 2 # number of levels of C
CT <- EMS(r ~ a*b*c*s, random="s")
expr <- strsplit(CT[CT != ""], split="")
expr <- unlist(lapply(expr, paste, collapse="*"))
expr <- sapply(expr, function(x) eval(parse(text=x)))
CT[CT != ""] <- expr
CT[CT == ""] <- 0
mode(CT) <- "numeric"
# residual variance and A*B*C*S variance are confounded in
# this design, so remove the A*B*C*S variance component
CT <- CT[-15,-2]
CT
# VarianceComponent
# Effect e b:c:s a:c:s a:b:s a:b:c c:s b:s a:s b:c a:c a:b s c b a
# a 1 0 0 0 0 0 0 4 0 0 0 0 0 0 200
# b 1 0 0 0 0 0 4 0 0 0 0 0 0 200 0
# c 1 0 0 0 0 4 0 0 0 0 0 0 200 0 0
# s 1 0 0 0 0 0 0 0 0 0 0 8 0 0 0
# a:b 1 0 0 2 0 0 0 0 0 0 100 0 0 0 0
# a:c 1 0 2 0 0 0 0 0 0 100 0 0 0 0 0
# b:c 1 2 0 0 0 0 0 0 100 0 0 0 0 0 0
# a:s 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0
# b:s 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0
# c:s 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0
# a:b:c 1 0 0 0 50 0 0 0 0 0 0 0 0 0 0
# a:b:s 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0
# a:c:s 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0
# b:c:s 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0
# e 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# get mean squares
(MSmod <- summary(aov(y ~ a*b*c*factor(sub), data=d2)))
# Df Sum Sq Mean Sq
# a 1 429.6 429.6
# b 1 329.5 329.5
# c 1 165.4 165.4
# factor(sub) 49 439.5 9.0
# a:b 1 491.3 491.3
# a:c 1 305.5 305.5
# b:c 1 466.1 466.1
# a:factor(sub) 49 638.4 13.0
# b:factor(sub) 49 583.8 11.9
# c:factor(sub) 49 452.2 9.2
# a:b:c 1 392.8 392.8
# a:b:factor(sub) 49 484.5 9.9
# a:c:factor(sub) 49 358.9 7.3
# b:c:factor(sub) 49 561.8 11.5
# a:b:c:factor(sub) 49 42.9 0.9
MS <- MSmod[[1]][,"Mean Sq"]
# solve
ans <- solve(CT, MS)
cbind(rev(ans[c(grep("e",names(ans)),grep("s",names(ans)))])/
c(1,2,2,2,4,4,4,1))
# s 1.0115549
# a:s 1.5191114
# b:s 1.3797937
# c:s 1.0441351
# a:b:s 1.1263331
# a:c:s 0.8060402
# b:c:s 1.3235126
# e 0.8765093
summary(mod4)
# Random effects:
# Groups Name Variance Std.Dev.
# sub (Intercept) 1.0116 1.0058
# sub.1 A 1.5191 1.2325
# sub.2 B 1.3798 1.1746
# sub.3 C 1.0441 1.0218
# sub.4 A:B 1.1263 1.0613
# sub.5 A:C 0.8060 0.8978
# sub.6 B:C 1.3235 1.1504
# Residual 0.8765 0.9362
# Number of obs: 400, groups: sub, 50
Okay, jetzt kehren wir zum ursprünglichen Beispiel zurück. Die F-Verhältnisse, die wir zu erreichen versuchen, sind:
aovMod2 <- aov(y~a*b*c+Error(subject/(a*b*c)), data = d)
tab <- lapply(summary(aovMod2), function(x) x[[1]][1,2:4])
do.call(rbind, tab)
# Sum Sq Mean Sq F value
# Error: subject 13.4747 1.2250
# Error: subject:a 1.4085 1.4085 1.2218
# Error: subject:b 3.1180 3.1180 5.5487
# Error: subject:c 6.3809 6.3809 5.2430
# Error: subject:a:b 1.5706 1.5706 2.6638
# Error: subject:a:c 1.0907 1.0907 1.5687
# Error: subject:b:c 1.4128 1.4128 2.3504
# Error: subject:a:b:c 0.1014 0.1014 0.1149
Hier sind unsere beiden Modelle:
mod5 <- lmer(y ~ a*b*c + (1|subject)+(1|a:subject)+(1|b:subject)+
(1|c:subject)+(1|a:b:subject)+(1|a:c:subject)+(1|b:c:subject),
data = d)
anova(mod5)
# Analysis of Variance Table
# Df Sum Sq Mean Sq F value
# a 1 0.8830 0.8830 1.3405
# b 1 3.1180 3.1180 4.7334
# c 1 3.8062 3.8062 5.7781
# a:b 1 1.5706 1.5706 2.3844
# a:c 1 0.9620 0.9620 1.4604
# b:c 1 1.4128 1.4128 2.1447
# a:b:c 1 0.1014 0.1014 0.1539
mod6 <- lmer(y ~ A*B*C + (1|subject)+(0+A|subject)+(0+B|subject)+
(0+C|subject)+(0+A:B|subject)+(0+A:C|subject)+
(0+B:C|subject), data = d)
anova(mod6)
# Analysis of Variance Table
# Df Sum Sq Mean Sq F value
# a 1 0.8830 0.8830 1.3405
# b 1 3.1180 3.1180 4.7334
# c 1 3.8062 3.8062 5.7781
# a:b 1 1.5706 1.5706 2.3844
# a:c 1 0.9620 0.9620 1.4604
# b:c 1 1.4128 1.4128 2.1447
# a:b:c 1 0.1014 0.1014 0.1539
logLik(mod5)
# 'log Lik.' -135.0351 (df=16)
logLik(mod6)
# 'log Lik.' -134.9191 (df=16)
In diesem Fall liefern die beiden Modelle grundsätzlich die gleichen Ergebnisse, obwohl die zweite Methode eine sehr geringfügig höhere Log-Wahrscheinlichkeit aufweist. Keine der beiden Methoden stimmt überein aov()
. Aber schauen wir uns an, was wir erhalten, wenn wir wie oben nach den Varianzkomponenten suchen. Verwenden Sie dazu das ANOVA-Verfahren, das die Varianzkomponenten nicht als nicht negativ einschränkt (sondern nur in ausgeglichenen Designs ohne kontinuierliche Prädiktoren und ohne verwendet werden kann) fehlende Daten; die klassischen ANOVA-Annahmen).
# prepare coefficient matrix
r <- 1 # number of replicates
s <- 12 # number of subjects
a <- 2 # number of levels of A
b <- 2 # number of levels of B
c <- 2 # number of levels of C
CT <- EMS(r ~ a*b*c*s, random="s")
expr <- strsplit(CT[CT != ""], split="")
expr <- unlist(lapply(expr, paste, collapse="*"))
expr <- sapply(expr, function(x) eval(parse(text=x)))
CT[CT != ""] <- expr
CT[CT == ""] <- 0
mode(CT) <- "numeric"
# residual variance and A*B*C*S variance are confounded in
# this design, so remove the A*B*C*S variance component
CT <- CT[-15,-2]
# get mean squares
MSmod <- summary(aov(y ~ a*b*c*subject, data=d))
MS <- MSmod[[1]][,"Mean Sq"]
# solve
ans <- solve(CT, MS)
cbind(rev(ans[c(grep("e",names(ans)),grep("s",names(ans)))])/
c(1,2,2,2,4,4,4,1))
# s 0.04284033
# a:s 0.03381648
# b:s -0.04004005
# c:s 0.04184887
# a:b:s -0.03657940
# a:c:s -0.02337501
# b:c:s -0.03514457
# e 0.88224787
summary(mod6)
# Random effects:
# Groups Name Variance Std.Dev.
# subject (Intercept) 7.078e-02 2.660e-01
# subject.1 A 6.176e-02 2.485e-01
# subject.2 B 0.000e+00 0.000e+00
# subject.3 C 6.979e-02 2.642e-01
# subject.4 A:B 1.549e-16 1.245e-08
# subject.5 A:C 4.566e-03 6.757e-02
# subject.6 B:C 0.000e+00 0.000e+00
# Residual 6.587e-01 8.116e-01
# Number of obs: 96, groups: subject, 12
Jetzt können wir sehen, was am ursprünglichen Beispiel pathologisch ist. Das am besten passende Modell impliziert, dass mehrere der zufälligen Varianzkomponenten negativ sind. Aber lmer()
(und die meisten anderen gemischten Modellprogramme) beschränken die Schätzungen der Varianzkomponenten auf nicht negativ. Dies wird allgemein als sinnvolle Einschränkung angesehen, da Abweichungen natürlich niemals wirklich negativ sein können. Eine Konsequenz dieser Einschränkung ist jedoch, dass gemischte Modelle Datensätze mit negativen Korrelationen innerhalb der Klasse nicht genau darstellen können, d. H. Datensätze, bei denen die Beobachtungen aus demselben Cluster geringer sind(eher als mehr) im Durchschnitt ähnlich wie Beobachtungen, die zufällig aus dem Datensatz gezogen wurden, und folglich, wenn die Varianz innerhalb des Clusters die Varianz zwischen den Clustern wesentlich übersteigt. Solche Datensätze sind durchaus vernünftige Datensätze, die man gelegentlich in der realen Welt findet (oder versehentlich simuliert!), Sie können jedoch von einem Varianzkomponentenmodell nicht sinnvoll beschrieben werden, da sie negative Varianzkomponenten implizieren. Sie können jedoch von solchen Modellen "unsinnig" beschrieben werden, wenn die Software dies zulässt. aov()
erlaubt es. lmer()
nicht.
y ~ a*b + (1 + a*b|subject), d[d$c == "1",]
? Oder fehlt mir vielleicht etwas?