Ich habe eine diskrete Funktion, die eine 1d-Position im Raum über die Zeit darstellt. Ich habe ein Bewegungssystem, das diese Kurve erreichen möchte, aber aufgrund von Einschränkungen hinsichtlich Ruck (3. Ableitung) und Beschleunigung (2. Ableitung) kann es die Bewegung nicht tatsächlich erreichen. Dies tritt aufgrund einer Diskontinuität in der Funktion auf, wo sie von einem flachen Signal zu einem starken Anstieg übergeht.
Ich suche nach einem Algorithmus, der die diskrete Reihe nimmt und eine neue Reihe erzeugt, die sich dem Original annähert, ohne die Obergrenzen für die Größe der zweiten und dritten Ableitung zu verletzen. Ich habe keine strenge Definition, wie ich den Fehler für die Position minimieren möchte, aber eine Standard-Summen-Mittelwert-Fehleranpassung ist wahrscheinlich vernünftig. Für die Ableitung nähere ich mich mit der standardzentrierten Differenz.
Ich habe versucht, einfach die Grenzwerte anzuwenden und so schnell wie möglich auf die Zielposition zu fahren, aber dies ist instabil (es berücksichtigt die Ruck- und Verzögerungszeit nicht richtig und überschießt daher das Ziel und schwingt). Ich habe darüber nachgedacht Anwenden eines wiederholten Tiefpassfilters, bis die Einschränkungen erfüllt sind, aber dies scheint ein bisschen wie ein Hack zu sein und ich bin nicht überzeugt, dass es mir eine sehr gute Passform geben wird. Gibt es eine Möglichkeit, einen Filter zu erstellen, der die Ableitungen des Signals spezifisch begrenzt?
Ein paar zusätzliche Hinweise:
Die neue Serie muss die gleiche Länge wie die Originalserie haben. Diese Bewegung erfolgt gleichzeitig mit einer anderen Operation und die beiden sind streng synchronisiert. Es ist jedoch akzeptabel, wenn die endgültige Position innerhalb der Einschränkungen nicht erreicht werden kann. Dies bedeutet nur, dass der Parallelbetrieb zu aggressiv ist, als dass die Bewegung folgen könnte. Dies sollte in der Praxis bei ordnungsgemäßer Konfiguration nicht auftreten.
Ich habe begonnen, einen iterativen Ansatz zu untersuchen, der einen Punkt identifiziert, der gegen die Einschränkungen verstößt, dann den Fehler korrigiert und das Negativ des Fehlers zwischen den beiden benachbarten Punkten aufteilt, sodass die Summe der Funktionswerte erhalten bleibt. Es berechnet dann den Fehler beim Nachbarn und überträgt den verbleibenden Fehler nach links bzw. rechts. Wenn es das Ende der Funktion erreicht und immer noch ein Fehler vorliegt, stürzt es nur bis an die Grenzen. Ich weiß nicht, ob dieser Ansatz eine solide theoretische Grundlage hat, aber ich werde experimentieren und sehen, wie er mit meinen Signalen funktioniert.
Weitere Hinweise:
Es ist sinnvoll, die Ruckfunktion (dritte Ableitung) als lineare Kombination von nicht überlappenden Schritt- und Impulsfunktionen zu approximieren. Für eine typische Eingabeserie sieht es ungefähr so aus (Blau gegen Rot ist mein aktueller Filterversuch; dies dient hauptsächlich dazu, eine Vorstellung von der Form zu vermitteln):
Hier ist ein typisches Beschleunigungsprofil:
Hier ist ein typisches Geschwindigkeitsprofil (der Anstieg am Start verursacht alle Probleme; die Physik des Problems veranlasst das System, sich von Anfang an mit nahezu unendlicher Geschwindigkeit zu bewegen, aber praktische Überlegungen stehen im Weg ):
Für diejenigen, die interessiert sind, ist hier die durch Tabulatoren getrennte Rohdatenreihe, aus der die zentralen Differenzableitungen angenähert wurden, um die obigen Diagramme zu erzeugen:
x 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.510544858 4.529570168 4.548595479 4.567620789 4.5866461 4.60567141 4.624696721 4.643722031 4.662747342 4.681772652 4.700797963 4.719823273 4.738848584 4.757873894 4.776899204 4.795924515 4.814949825 4.833975136 4.853000446 4.872025757 4.891051067 4.910076378 4.929101688 4.948126999 4.967152309 4.98617762 5.00520293 5.024228241 5.043253551 5.062278862 5.081304172 5.100329483 5.119354793 5.138380104 5.157405414 5.176430725 5.195456035 5.214481346 5.233506656 5.252531967 5.271557277 5.290582588 5.309607898 5.328633209 5.347658519 5.36668383 5.38570914 5.404734451 5.423759761 5.442785072 5.461810382 5.480714657 5.497626044 5.514537431 5.531448818 5.548360206 5.565271593 5.58218298 5.599094367 5.616005754 5.632917141 5.649828528 5.666739915 5.683651302 5.700562689 5.717474077 5.734385464 5.751296851 5.768208238 5.785119625 5.802031012 5.818942399 5.835853786 5.852765173 5.869676561 5.886587948 5.903499335 5.920410722 5.937322109 5.954233496 5.971144883 5.98805627 6.004967657 6.021879044 6.038790432 6.055701819 6.072613206 6.089524593 6.10643598 6.123347367 6.140258754 6.157170141 6.174081528 6.190992916 6.207904303 6.22481569 6.241727077 6.258638464 6.275549851 6.292461238 6.309372625 6.326284012 6.343195399 6.360106787 6.377018174 6.393929561 6.410840948 6.427752335 6.444663722 6.461575109 6.478486496 6.495397883 6.512309271 6.529220658 6.546132045 6.563043432 6.579954819 6.596866206 6.613777593 6.63068898 6.647600367 6.664511754 6.681423142 6.698334529 6.715245916 6.732157303 6.74906869 6.765980077 6.782891464 6.79783353 6.807698506 6.817563482 6.827428457 6.837293433 6.847158409 6.857023385 6.866888361 6.876753336 6.886618312 6.896483288 6.906348264 6.91621324 6.926078215 6.935943191 6.945808167 6.955673143 6.965538119 6.975403095 6.98526807 6.995133046 7.004998022 7.014862998 7.024727974 7.034592949 7.044457925 7.054322901 7.064187877 7.074052853 7.083917828 7.093782804 7.10364778 7.113512756 7.123377732 7.133242707 7.143107683 7.152972659 7.162837635 7.172702611 7.182567587 7.192432562 7.202297538 7.212162514 7.22202749 7.231892466 7.241757441 7.251622417 7.261487393 7.271352369 7.281217345 7.29108232 7.300947296 7.310812272 7.320677248 7.330542224 7.3404072 7.350272175 7.360137151 7.370002127 7.379867103 7.389732079 7.399597054 7.40946203 7.419327006 7.429191982 7.439056958 7.448921933 7.45668417 7.46311785 7.46955153 7.47598521 7.48241889 7.488852569 7.495286249 7.501719929 7.508153609 7.514587289 7.521020969 7.527454649 7.533888329 7.540322008 7.546755688 7.553189368 7.559623048 7.566056728 7.572490408 7.578924088 7.585357768 7.591791447 7.598225127 7.604658807 7.611092487 7.617471594 7.622952136 7.628432678 7.63391322 7.639393762 7.644874304 7.650354846 7.655835389 7.661315931 7.666796473 7.672277015 7.677757557 7.683238099 7.688718641 7.694199183 7.699679725 7.705160268 7.71064081 7.716121352 7.721601894 7.727082436 7.732562978 7.73804352 7.743524062 7.749004605 7.754485147 7.759965689 7.765446231 7.770926773 7.776407315 7.781828236 7.786267475 7.790706714 7.795145953 7.799585192 7.804024432 7.808463671 7.81290291 7.817342149 7.821781388 7.826220627 7.830659866 7.835099105 7.839538344 7.843977584 7.848416823 7.852856062 7.857295301 7.86173454 7.866173779 7.870613018 7.875052257 7.879491497 7.883930736 7.888369975 7.892809214 7.897248453 7.901687692 7.906126931 7.91056617 7.915005409 7.919444649 7.923883888 7.928323127 7.932762366 7.937201605 7.941640844 7.946080083 7.950519322 7.954958561 7.959397801 7.96383704 7.968276279 7.972715518 7.977154757 7.980384921 7.982851165 7.985317409 7.987783653 7.990249897 7.992716141 7.995182385 7.997648629 8.000114873 8.002581117 8.005047361 8.007513605 8.009979849 8.012446092 8.014912336 8.01737858 8.019844824 8.022311068 8.024777312 8.027243556 8.0297098 8.032176044 8.034642288 8.037108532 8.039574776 8.04204102 8.044507264 8.046973508 8.049439752 8.051905996 8.05437224 8.056838484 8.059304728 8.061633119 8.063606114 8.065579109 8.067552105 8.0695251 8.071498095 8.07347109 8.075444085 8.07741708 8.079390076 8.081363071 8.083336066 8.085309061 8.087282056 8.089255051 8.091228046 8.093201042 8.09410447 8.094332124 8.094559777 8.09478743 8.095015084 8.095242737 8.09547039 8.095698043 8.095925697 8.09615335 8.096381003 8.096608657 8.09683631 8.097063963 8.097291616 8.09751927 8.097746923 8.097974576 8.09820223 8.098429883 8.098657536 8.098885189 8.099112843 8.099340496 8.099568149 8.099795803 8.100023456 8.100251109 8.100478762 8.100706416 8.100934069 8.101161722 8.101389376 8.101617029 8.101844682 8.102072336 8.102299989 8.102527642 8.102755295 8.102982949 8.103210602 8.103438255 8.103665909 8.103893562 8.104121215 8.104348868 8.104576522 8.104804175 8.105031828 8.105259482 8.105487135 8.105714788 8.105942441 8.106170095 8.106397748 8.106625401 8.106853055 8.107080708 8.107308361 8.107536014 8.107763668 8.107991321 8.108218974 8.108446628 8.108674183 8.108899792 8.109120089 8.109331659 8.109531087 8.109714959 8.10987986 8.110022376 8.110139158 8.11022965 8.110297009 8.110344649 8.110375986 8.110394434 8.110403409 8.110406324 8.110406324