Ich habe kürzlich einen Artikel von Subhash Kak gefunden, in dem Teleportationsprotokolle vorgestellt werden, die geringere klassische Kommunikationskosten erfordern (mit mehr Quantenressourcen). Ich dachte, es wäre besser, eine separate Antwort zu schreiben.
Kak diskutiert drei Protokolle; zwei von ihnen verwenden 1 cbit und der letzte benötigt 1,5 cbit. Die ersten beiden Protokolle befinden sich jedoch in einer anderen Umgebung, dh die verwickelten Partikel befinden sich zunächst in Alices Labor (und es werden einige lokale Operationen durchgeführt). Anschließend wird eines der verwickelten Partikel in Bobs Labor übertragen. Dies unterscheidet sich von der Standardeinstellung , bei der die verwickelten Partikel vor dem Starten des Protokolls zwischen Alice und Bob vorab geteilt werden. Interessenten können die Protokolle durchgehen, die nur 1 cbit verwenden. Ich werde versuchen , das letzte Protokoll zu erklären, das nur 1,5 cbits (gebrochene cbits) verwendet.
X,Y,ZUXX,YZUXα|0⟩+β|1⟩|α|2+|β|2=1Y,ZU are in the pure entangled state |000⟩+|111⟩ (leaving the normalization constants for now).
So, the initial state of the whole system is:
α|0000⟩+β|1000⟩+α|0111⟩+β|1111⟩
Step 1: Apply chained XOR transformations on X,Y and Z (i) XOR the states of X and Y (ii) XOR the states of Y and Z.
The XOR unitary is given by:
XOR=⎡⎣⎢⎢⎢1000010000010010⎤⎦⎥⎥⎥.
In other words, the state transformations are the following:
|00⟩→|00⟩|01⟩→|01⟩|10⟩→|11⟩|11⟩→|10⟩
After Step 1, the state of the whole system is:
α|0000⟩+β|1110⟩+α|0101⟩+β|1011⟩
Step 2: Apply Hadamard tranform on the state of X.
α(|0000⟩+|1000⟩)+β(|0110⟩−|1110⟩)+α(|0101⟩+|1101⟩)+β(|0011⟩−|1011⟩)
Step 3: Alice measures the state of X and Y.
On simplifying the above representation, we get
|00⟩(α|00⟩+β|11⟩)+|01⟩(α|01⟩+β|10⟩)+|10⟩(α|00⟩−β|11⟩)+|11⟩(α|01⟩−β|10⟩).
Step 4: Depending on Alice's measurement outcome, appropiate unitaries are applied on Z (by Alice) and U (by Bob).
(a) If Alice gets |00⟩, then both Alice and Bob do nothing.
(b) If Alice gets |10⟩, then Alice applies [100−1] and Bob does nothing.
(c) If Alice gets |01⟩, then Alice does nothing and Bob applies [0110].
(d) If Alice gets |11⟩, then Alice applies [100−1] and Bob applies [0110].
Basically, [1001], [100−1], [0110] and [0−110] can be appropiately used to alter the combined state of Z and U so that it becomes α|00⟩+β|11⟩. Note that if Alice gets |01⟩ or |11⟩, then Bob has to apply some unitary so that the combined state of Z and U is α|00⟩+β|11⟩.
Step 5: Apply Hadamard transform on the state of Z.
After applying the unitaries, the combined state of Z and U is α|00⟩+β|11⟩ (as mentioned above). So, after Step 5, the combined state of Z and U is,
α|00⟩+α|10⟩+β|01⟩−β|11⟩=|0⟩(α|0⟩+β|1⟩)+|1⟩(α|0⟩−β|1⟩).
Step 6: Alice measures the state of Z.
Based on her measurement, she transmits one classical bit of information to Bob so that he can use an appropriate unitary to obtain the unkown state!
Discussion: So, how does the protocol require 1.5 bits of clasiical communication? Cleary, Step 6 uses 1 cbit, and in Step 4, it is easy notice that for two outcomes (namely, |10⟩ or |00⟩), Bob need not apply any unitary. Bob has to apply some unitary (specified prior to the protocool; say [0110]) if Alice gets the other two outcomes, and in those scenarios, Alice sends one cbit indicating that the unitary is to be used by Bob. So, it is mentioned that this has a computational burden of 0.5 cbits (because 50% of the time, Bob need not apply any unitary). Hence, the whole protocol requires only 1.5 cbits.
But, Alice must send that 1 cbit whether or not she gets those outcomes, right? Alice and Bob cannot agree on a particular time (after the protocol) when Alice sends that 1 cbit, and if Bob doesn't get that classical bit by that time, then he knows that he need not apply any unitary. These time dependent protcols are, in general, not allowed due to relativistic consequences (otherwise, you can even make the Standard protocol to use time for indicating information and reduce the classical communication cost to 1 cbit; for example, at t1, send one cbit or at t2, send one cbit). So, Alice must send that cbit everytime, right? In that case, the protcol requires 2 cbits (one in Step 4 and another in Step 6). I thought it'd be good if there was a discussion on this particular part.