Ich arbeite derzeit an einer Bayes'schen Methode, die mehrere Schritte zur Optimierung eines multinomialen Logit-Modells pro Iteration erfordert. Ich verwende optim (), um diese Optimierungen durchzuführen, und eine in R geschriebene Zielfunktion. Eine Profilerstellung ergab, dass optim () der Hauptengpass ist.
Nachdem ich mich umgesehen hatte, fand ich diese Frage, in der vorgeschlagen wurde, dass das Neukodieren der Zielfunktion mit Rcpp
den Prozess beschleunigen könnte. Ich folgte dem Vorschlag und kodierte meine Zielfunktion mit Rcpp
, aber es wurde langsamer (ungefähr zweimal langsamer!).
Dies war mein erstes Mal mit Rcpp
(oder irgendetwas im Zusammenhang mit C ++) und ich konnte keinen Weg finden, den Code zu vektorisieren. Irgendeine Idee, wie man es schneller macht?
Tl; dr: Die derzeitige Implementierung der Funktion in Rcpp ist nicht so schnell wie die vektorisierte R; wie kann man es schneller machen?
Ein reproduzierbares Beispiel :
1) Definieren Sie Zielfunktionen in R
und Rcpp
: Log-Wahrscheinlichkeit eines Intercept-Only-Multinomial-Modells
library(Rcpp)
library(microbenchmark)
llmnl_int <- function(beta, Obs, n_cat) {
n_Obs <- length(Obs)
Xint <- matrix(c(0, beta), byrow = T, ncol = n_cat, nrow = n_Obs)
ind <- cbind(c(1:n_Obs), Obs)
Xby <- Xint[ind]
Xint <- exp(Xint)
iota <- c(rep(1, (n_cat)))
denom <- log(Xint %*% iota)
return(sum(Xby - denom))
}
cppFunction('double llmnl_int_C(NumericVector beta, NumericVector Obs, int n_cat) {
int n_Obs = Obs.size();
NumericVector betas = (beta.size()+1);
for (int i = 1; i < n_cat; i++) {
betas[i] = beta[i-1];
};
NumericVector Xby = (n_Obs);
NumericMatrix Xint(n_Obs, n_cat);
NumericVector denom = (n_Obs);
for (int i = 0; i < Xby.size(); i++) {
Xint(i,_) = betas;
Xby[i] = Xint(i,Obs[i]-1.0);
Xint(i,_) = exp(Xint(i,_));
denom[i] = log(sum(Xint(i,_)));
};
return sum(Xby - denom);
}')
2) Vergleichen Sie ihre Effizienz:
## Draw sample from a multinomial distribution
set.seed(2020)
mnl_sample <- t(rmultinom(n = 1000,size = 1,prob = c(0.3, 0.4, 0.2, 0.1)))
mnl_sample <- apply(mnl_sample,1,function(r) which(r == 1))
## Benchmarking
microbenchmark("llmml_int" = llmnl_int(beta = c(4,2,1), Obs = mnl_sample, n_cat = 4),
"llmml_int_C" = llmnl_int_C(beta = c(4,2,1), Obs = mnl_sample, n_cat = 4),
times = 100)
## Results
# Unit: microseconds
# expr min lq mean median uq max neval
# llmnl_int 76.809 78.6615 81.9677 79.7485 82.8495 124.295 100
# llmnl_int_C 155.405 157.7790 161.7677 159.2200 161.5805 201.655 100
3) Rufen Sie sie jetzt an optim
:
## Benchmarking with optim
microbenchmark("llmnl_int" = optim(c(4,2,1), llmnl_int, Obs = mnl_sample, n_cat = 4, method = "BFGS", hessian = T, control = list(fnscale = -1)),
"llmnl_int_C" = optim(c(4,2,1), llmnl_int_C, Obs = mnl_sample, n_cat = 4, method = "BFGS", hessian = T, control = list(fnscale = -1)),
times = 100)
## Results
# Unit: milliseconds
# expr min lq mean median uq max neval
# llmnl_int 12.49163 13.26338 15.74517 14.12413 18.35461 26.58235 100
# llmnl_int_C 25.57419 25.97413 28.05984 26.34231 30.44012 37.13442 100
Ich war etwas überrascht, dass die vektorisierte Implementierung in R schneller war. Die Implementierung einer effizienteren Version in Rcpp (z. B. mit RcppArmadillo?) Kann zu Gewinnen führen. Ist es eine bessere Idee, alles in Rcpp mit einem C ++ - Optimierer neu zu codieren?
PS: Erstes Posting bei Stackoverflow!
Obs
als einIntegerVector
paar Würfe zu entfernen.