Beide sind Spalten- (Platten-) Speicherformate zur Verwendung in Datenanalysesystemen. Beide sind in Apache Arrow ( Pyarrow- Paket für Python) integriert und entsprechen Arrow als säulenförmige In-Memory-Analyseebene.
Wie unterscheiden sich beide Formate?
Sollten Sie bei der Arbeit mit Pandas nach Möglichkeit immer Federn bevorzugen?
Was sind die Anwendungsfälle, in denen Federn besser geeignet sind als Parkett und umgekehrt?
Blinddarm
Ich habe hier einige Hinweise gefunden: https://github.com/wesm/feather/issues/188 , aber angesichts des jungen Alters dieses Projekts ist es möglicherweise etwas veraltet.
Kein ernsthafter Geschwindigkeitstest, da ich nur einen ganzen Datenrahmen entleere und lade, aber um Ihnen einen Eindruck zu vermitteln, wenn Sie noch nie von den Formaten gehört haben:
# IPython
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.feather as feather
import pyarrow.parquet as pq
import fastparquet as fp
df = pd.DataFrame({'one': [-1, np.nan, 2.5],
'two': ['foo', 'bar', 'baz'],
'three': [True, False, True]})
print("pandas df to disk ####################################################")
print('example_feather:')
%timeit feather.write_feather(df, 'example_feather')
# 2.62 ms ± 35.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
print('example_parquet:')
%timeit pq.write_table(pa.Table.from_pandas(df), 'example.parquet')
# 3.19 ms ± 51 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
print()
print("for comparison:")
print('example_pickle:')
%timeit df.to_pickle('example_pickle')
# 2.75 ms ± 18.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
print('example_fp_parquet:')
%timeit fp.write('example_fp_parquet', df)
# 7.06 ms ± 205 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
print('example_hdf:')
%timeit df.to_hdf('example_hdf', 'key_to_store', mode='w', table=True)
# 24.6 ms ± 4.45 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
print()
print("pandas df from disk ##################################################")
print('example_feather:')
%timeit feather.read_feather('example_feather')
# 969 µs ± 1.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
print('example_parquet:')
%timeit pq.read_table('example.parquet').to_pandas()
# 1.9 ms ± 5.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
print("for comparison:")
print('example_pickle:')
%timeit pd.read_pickle('example_pickle')
# 1.07 ms ± 6.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
print('example_fp_parquet:')
%timeit fp.ParquetFile('example_fp_parquet').to_pandas()
# 4.53 ms ± 260 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
print('example_hdf:')
%timeit pd.read_hdf('example_hdf')
# 10 ms ± 43.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# pandas version: 0.22.0
# fastparquet version: 0.1.3
# numpy version: 1.13.3
# pandas version: 0.22.0
# pyarrow version: 0.8.0
# sys.version: 3.6.3
# example Dataframe taken from https://arrow.apache.org/docs/python/parquet.html