Ich habe eine Reihe von Floats (einige normale Zahlen, einige Nans), die aus einer Anwendung auf einen Pandas-Datenrahmen hervorgehen.
Aus irgendeinem Grund schlägt numpy.isnan in diesem Array fehl. Wie unten gezeigt, ist jedes Element ein Float. Numpy.isnan wird in jedem Element korrekt ausgeführt. Der Typ der Variablen ist definitiv ein numpy-Array.
Was ist los?!
set([type(x) for x in tester])
Out[59]: {float}
tester
Out[60]:
array([-0.7000000000000001, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan], dtype=object)
set([type(x) for x in tester])
Out[61]: {float}
np.isnan(tester)
Traceback (most recent call last):
File "<ipython-input-62-e3638605b43c>", line 1, in <module>
np.isnan(tester)
TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
set([np.isnan(x) for x in tester])
Out[65]: {False, True}
type(tester)
Out[66]: numpy.ndarray