.any()
und .all()
eignen sich hervorragend für Extremfälle, jedoch nicht, wenn Sie nach einer bestimmten Anzahl von Nullwerten suchen. Hier ist eine äußerst einfache Möglichkeit, das zu tun, was Sie meiner Meinung nach verlangen. Es ist ziemlich ausführlich, aber funktional.
import pandas as pd
import numpy as np
# Some test data frame
df = pd.DataFrame({'num_legs': [2, 4, np.nan, 0, np.nan],
'num_wings': [2, 0, np.nan, 0, 9],
'num_specimen_seen': [10, np.nan, 1, 8, np.nan]})
# Helper : Gets NaNs for some row
def row_nan_sums(df):
sums = []
for row in df.values:
sum = 0
for el in row:
if el != el: # np.nan is never equal to itself. This is "hacky", but complete.
sum+=1
sums.append(sum)
return sums
# Returns a list of indices for rows with k+ NaNs
def query_k_plus_sums(df, k):
sums = row_nan_sums(df)
indices = []
i = 0
for sum in sums:
if (sum >= k):
indices.append(i)
i += 1
return indices
# test
print(df)
print(query_k_plus_sums(df, 2))
Ausgabe
num_legs num_wings num_specimen_seen
0 2.0 2.0 10.0
1 4.0 0.0 NaN
2 NaN NaN 1.0
3 0.0 0.0 8.0
4 NaN 9.0 NaN
[2, 4]
Wenn Sie dann wie ich sind und diese Zeilen löschen möchten, schreiben Sie einfach Folgendes:
# drop the rows from the data frame
df.drop(query_k_plus_sums(df, 2),inplace=True)
# Reshuffle up data (if you don't do this, the indices won't reset)
df = df.sample(frac=1).reset_index(drop=True)
# print data frame
print(df)
Ausgabe:
num_legs num_wings num_specimen_seen
0 4.0 0.0 NaN
1 0.0 0.0 8.0
2 2.0 2.0 10.0
df[df.isnull().any(axis=1)]
funktioniert aber wirftUserWarning: Boolean Series key will be reindexed to match DataFrame index.
. Wie schreibt man dies expliziter und so um, dass diese Warnmeldung nicht ausgelöst wird?