Bitte beachten Sie, dass die Autoren seaborn
nur wollen seaborn.heatmap
mit kategorischen Datenrahmen an der Arbeit. Es ist nicht allgemein.
Wenn Ihr Index und Ihre Spalten numerische Werte und / oder Datums- / Uhrzeitwerte sind, ist dieser Code für Sie von Vorteil.
Für die Matplotlib-Heat-Mapping-Funktion pcolormesh
sind Bins anstelle von Indizes erforderlich. Daher gibt es einen ausgefallenen Code zum Erstellen von Bins aus Ihren Dataframe-Indizes (auch wenn Ihr Index nicht gleichmäßig verteilt ist!).
Der Rest ist einfach np.meshgrid
und plt.pcolormesh
.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def conv_index_to_bins(index):
"""Calculate bins to contain the index values.
The start and end bin boundaries are linearly extrapolated from
the two first and last values. The middle bin boundaries are
midpoints.
Example 1: [0, 1] -> [-0.5, 0.5, 1.5]
Example 2: [0, 1, 4] -> [-0.5, 0.5, 2.5, 5.5]
Example 3: [4, 1, 0] -> [5.5, 2.5, 0.5, -0.5]"""
assert index.is_monotonic_increasing or index.is_monotonic_decreasing
# the beginning and end values are guessed from first and last two
start = index[0] - (index[1]-index[0])/2
end = index[-1] + (index[-1]-index[-2])/2
# the middle values are the midpoints
middle = pd.DataFrame({'m1': index[:-1], 'p1': index[1:]})
middle = middle['m1'] + (middle['p1']-middle['m1'])/2
if isinstance(index, pd.DatetimeIndex):
idx = pd.DatetimeIndex(middle).union([start,end])
elif isinstance(index, (pd.Float64Index,pd.RangeIndex,pd.Int64Index)):
idx = pd.Float64Index(middle).union([start,end])
else:
print('Warning: guessing what to do with index type %s' %
type(index))
idx = pd.Float64Index(middle).union([start,end])
return idx.sort_values(ascending=index.is_monotonic_increasing)
def calc_df_mesh(df):
"""Calculate the two-dimensional bins to hold the index and
column values."""
return np.meshgrid(conv_index_to_bins(df.index),
conv_index_to_bins(df.columns))
def heatmap(df):
"""Plot a heatmap of the dataframe values using the index and
columns"""
X,Y = calc_df_mesh(df)
c = plt.pcolormesh(X, Y, df.values.T)
plt.colorbar(c)
Nennen Sie es mit heatmap(df)
und sehen Sie es mit plt.show()
.